When must a base for a locally connected space contain a base of connected sets?
Portugaliae mathematica, Tome 36 (1977) no. 1, pp. 61-63
Keywords:
pm-normality, regular closed set, zero set, normal locally connected space, base properties, lower semicontinuous function
@article{PORMA_1977__36_1_115303,
author = {Foland, N. and Nevin, B. and Pedersen, F.},
title = {When must a base for a locally connected space contain a base of connected sets?},
journal = {Portugaliae mathematica},
pages = {61--63},
year = {1977},
volume = {36},
number = {1},
mrnumber = {0535224},
zbl = {0408.54006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PORMA_1977__36_1_115303/}
}
TY - JOUR AU - Foland, N. AU - Nevin, B. AU - Pedersen, F. TI - When must a base for a locally connected space contain a base of connected sets? JO - Portugaliae mathematica PY - 1977 SP - 61 EP - 63 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/PORMA_1977__36_1_115303/ LA - en ID - PORMA_1977__36_1_115303 ER -
Foland, N.; Nevin, B.; Pedersen, F. When must a base for a locally connected space contain a base of connected sets?. Portugaliae mathematica, Tome 36 (1977) no. 1, pp. 61-63. http://geodesic.mathdoc.fr/item/PORMA_1977__36_1_115303/