On the number of solutions of a congruence in GF[q,x]
Portugaliae mathematica, Tome 32 (1973) no. 1, pp. 9-16.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

@article{PORMA_1973__32_1_115183,
     author = {Shader, Leslie E.},
     title = {On the number of solutions of a congruence in {GF[q,x]}},
     journal = {Portugaliae mathematica},
     pages = {9--16},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1973},
     mrnumber = {0323761},
     zbl = {0274.12014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PORMA_1973__32_1_115183/}
}
TY  - JOUR
AU  - Shader, Leslie E.
TI  - On the number of solutions of a congruence in GF[q,x]
JO  - Portugaliae mathematica
PY  - 1973
SP  - 9
EP  - 16
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PORMA_1973__32_1_115183/
LA  - en
ID  - PORMA_1973__32_1_115183
ER  - 
%0 Journal Article
%A Shader, Leslie E.
%T On the number of solutions of a congruence in GF[q,x]
%J Portugaliae mathematica
%D 1973
%P 9-16
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PORMA_1973__32_1_115183/
%G en
%F PORMA_1973__32_1_115183
Shader, Leslie E. On the number of solutions of a congruence in GF[q,x]. Portugaliae mathematica, Tome 32 (1973) no. 1, pp. 9-16. http://geodesic.mathdoc.fr/item/PORMA_1973__32_1_115183/