@article{PMFA_2024_69_4_a3,
author = {Slav{\'\i}k, Anton{\'\i}n},
title = {M{\'\i}ch\'an{\'\i} karet a kombinatorick\'e posloupnosti},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {243--249},
year = {2024},
volume = {69},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2024_69_4_a3/}
}
Slavík, Antonín. Míchání karet a kombinatorické posloupnosti. Pokroky matematiky, fyziky a astronomie, Tome 69 (2024) no. 4, pp. 243-249. http://geodesic.mathdoc.fr/item/PMFA_2024_69_4_a3/
[1] Bell, E. T.: Exponential numbers. Amer. Math. Monthly 41 (1934), 411–419. | DOI | MR
[2] Diaconis, P., Fulman, J.: The mathematics of shuffling cards. American Mathematical Society, 2023. | MR
[3] Durstenfeld, R.: Algorithm 235: Random permutation. Commun. ACM 7 (1964), 420–420. | DOI
[4] Fisher, R. A., Yates, F.: Statistical tables for biological, agricultural and medical research. 3rd ed., Oliver & Boyd, 1948. | MR
[5] WikiPedia.org: Fisher–Yates shuffle. [online]. https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
[6] Gardner, M.: Fractal music, hypercards and more... Mathematical recreations from Scientific American Magazine. W. H. Freeman and Company, 1992. | MR
[7] Goldstein, D., Moews, D.: The identity is the most likely exchange shuffle for large $n$. Aequationes Math. 65 (2003), 3–30. | DOI | MR
[8] Hubač, D.: Permutace s předepsanými délkami cyklů. Pokroky Mat. Fyz. Astronom. 69 (2024), 75–96.
[9] Knuth, D. E.: The art of computer programming, Vol. 2. Seminumerical algorithms. 3rd edition, Addison–Wesley, 1998. | MR
[10] Láska, V.: Sammlung von Formeln der reinen und angewandten Mathematik. Friedrich Vieweg und Sohn, 1894.
[11] Mulcahy, C.: Mathematical card magic. Fifty-two new effects. CRC Press, 2013. | MR
[12] Robbins, D. P., Bolker, E. D.: The bias of three pseudo-random shuffles. Aequationes Math. 22 (1981), 268–292. | DOI | MR
[13] WikiPedia.org: Shuffling. [online]. https://en.wikipedia.org/wiki/Shuffling