@article{PMFA_2024_69_3_a0,
author = {Andres, Jan and \v{C}erm\'ak, Jan and Fedorkov\'a, Lucie},
title = {Piers {Bohl} st\'ale inspiruj{\'\i}c{\'\i}},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {133--152},
year = {2024},
volume = {69},
number = {3},
zbl = {07953735},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2024_69_3_a0/}
}
Andres, Jan; Čermák, Jan; Fedorková, Lucie. Piers Bohl stále inspirující. Pokroky matematiky, fyziky a astronomie, Tome 69 (2024) no. 3, pp. 133-152. http://geodesic.mathdoc.fr/item/PMFA_2024_69_3_a0/
[1] Bohl, P.: Ueber die Darstellung von Functionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln proportionalen Argumenten. Magisterské teze. Jurjew (Dorpat), 1893.
[2] Bohl, P.: Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 127 (1904), 179–276. | MR
[3] Bohl, P.: Über eine Differentialgleichung der Störungstheorie. J. Reine Angew. Math. 131 (1906), 268–321. | MR
[4] Bohl, P.: Zur Theorie der trinomischen Gleichungen. Math. Ann. 65 (1908), 556–566. | DOI | MR
[5] Bohl, P.: Über ein in der Theorie der säkularen Störungen vorkommendes Problem. J. Reine Angew. Math. 135 (1909), 189–283. | DOI | MR
[6] Brilleslyper, M. A., Schaubroeck, L. E.: Locating unimodular roots. College Math. J. 45 (2014), 162–168. | DOI | MR
[7] Brilleslyper, M. A., Schaubroeck, L. E.: Counting interior roots of trinomials. Math. Mag. 91 (2018), 142–150. | DOI | MR
[8] Brown, R. F.: Retraction methods in Nielsen fixed point theory. Pacific J. Math. 115 (1984), 277–297. | DOI | MR
[9] Clark, C. W.: A delayed-recruitment model of population dynamics, with an application to baleen whale populations. J. Math. Biol. 3 (1976), 381–391. | DOI | MR
[10] Čermák, J.: Stability conditions for linear delay difference equations: A survey and perspectives. Tatra Mt. Math. Publ. 63 (2015), 1–29. | MR
[11] Čermák, J., Fedorková, L.: On a nearly forgotten polynomial result by P. Bohl. Amer. Math. Monthly 130 (2023), 176–181. | DOI | MR
[12] Dannan, F. M.: The asymptotic stability of $x(n+k)+ax(n)+bx(n-l) = 0$. J. Difference Equ. Appl. 10 (2004), 589–599. | DOI | MR
[13] Dannan, F. M., Elaydi, S.: The asymptotic stability of linear difference equations of advanced type. J. Comput. Anal. Appl. 6 (2003), 1–11. | MR
[14] Doan, T. S., Palmer, K. J., Rasmussen, M.: The Bohl spectrum for linear nonautonomous differential equations. J. Dyn. Differ. Equations 29 (2017), 1459–1485. | DOI | MR
[15] Fischer, A.: Od funkcí periodických ke skoroperiodickým. Pokroky Mat. Fyz. Astronom. 45 (2000), 273–283.
[16] Günzler, H.: Integration of almost periodic functions. Math. Z. 102 (1987), 253–287. | DOI | MR
[17] Howell, R., Kyle, D.: Locating trinomial zeros. Involve 11 (2018), 711–720. | DOI | MR
[18] Cheng, S. S., Huang, S. Y.: Alternate derivations of the stability region of a difference equation with two delays. Appl. Math. E-Notes 9 (2009), 225–253. | MR
[19] Kipnis, M. M., Nigmatulin, R. M.: Stability of the trinomial linear difference equations with two delays. Autom. Remote Control. 65 (2004), 1710–1723. | DOI | MR
[20] Kuruklis, S. A.: The asymptotic stability of $x_{n+1} - ax_n + bx_{n-k} = 0$. J. Math. Anal. Appl. 188 (1994), 719–731. | MR
[21] Levin, S. A., May, R.: A note on difference delay equations. Theor. Popul. Biol. 9 (1976), 178–187. | DOI | MR
[22] Marden, M.: Geometry of polynomials. Second edition, Amer. Math. Soc., Providence, RI, 1966. | MR
[23] Matsunaga, H., Hajiri, C.: Exact stability sets for a linear difference system with diagonal delay. J. Math. Anal. Appl. 369 (2010), 616–622. | DOI | MR
[24] Melman, A.: Geometry of trinomials. Pacific J. Math. 259 (2012), 141–159. | DOI | MR
[25] O’Connor, J. J., Robertson, E. F.: Piers Bohl, MacTutor History of Mathematics. [online], [cit. 25. 3. 2024]. Dostupné z: https://mathshistory.st-andrews.ac.uk/Biographies/Bohl/
[26] Papanicolaou, V. G.: On the asymptotic stability of a class of linear difference equations. Math. Mag. 69 (1996), 34–43. | DOI | MR
[27] Pick, L.: O využití iracionality při hledání sedmého nebe. Pokroky Mat. Fyz. Astronom. 67 (2022), 37–44.
[28] Ren, H.: Stability analysis of second order delay difference equations. Funkcial. Ekvac. 50 (2007), 405–419. | DOI | MR
[29] Rothe, E. H.: Introduction to various aspects of degree theory in Banach spaces. Amer. Math. Soc., Providence, RI, 1986. | MR
[30] Schaefer, H.: Über die Methode der a priori Schranken. Math. Ann. 129 (1955), 415–416. | DOI | MR
[31] Šostak, A.: The Latvian Mathematical Society after 10 years. J. Eur. Math. Soc. 48 (2003), 21–25.
[32] Taimina, D.: Some notes on mathematics in Latvia through the centuries. [online], [cit. 25. 3. 2024]. Dostupné z: https://pi.math.cornell.edu/~dtaimina/mathinLV/mathinlv.html
[33] Theobald, T., de Wolff, T.: Norms of roots of trinomials. Math. Ann. 366 (2016), 219–247. | DOI | MR