Hořčíkové nanokompozity - materiály se slibnou budoucností
Pokroky matematiky, fyziky a astronomie, Tome 68 (2023) no. 4, pp. 227-245 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Článek seznamuje čtenáře s moderními materiály na bázi hořčíku, které lze oprávněně považovat za materiály, jimž bude patřit budoucnost. Kromě stručné historie objevu hořčíku a jeho využívání lidstvem je zde ve stručnosti pojednáno o základních typech hořčíkových materiálů. Druhá část článku pojednává o některých výsledcích, které autoři získali při výzkumu nanokompozitů s hořčíkovou matricí, což je typický příklad pokročilých hořčíkových materiálů se zajímavými mechanickými a fyzikálními vlastnostmi.
Článek seznamuje čtenáře s moderními materiály na bázi hořčíku, které lze oprávněně považovat za materiály, jimž bude patřit budoucnost. Kromě stručné historie objevu hořčíku a jeho využívání lidstvem je zde ve stručnosti pojednáno o základních typech hořčíkových materiálů. Druhá část článku pojednává o některých výsledcích, které autoři získali při výzkumu nanokompozitů s hořčíkovou matricí, což je typický příklad pokročilých hořčíkových materiálů se zajímavými mechanickými a fyzikálními vlastnostmi.
@article{PMFA_2023_68_4_a1,
     author = {Drozd, Zden\v{e}k and Trojanov\'a, Zuzanka and Luk\'a\v{c}, Pavel},
     title = {Ho\v{r}\v{c}{\'\i}kov\'e nanokompozity - materi\'aly se slibnou budoucnost{\'\i}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {227--245},
     year = {2023},
     volume = {68},
     number = {4},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2023_68_4_a1/}
}
TY  - JOUR
AU  - Drozd, Zdeněk
AU  - Trojanová, Zuzanka
AU  - Lukáč, Pavel
TI  - Hořčíkové nanokompozity - materiály se slibnou budoucností
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2023
SP  - 227
EP  - 245
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PMFA_2023_68_4_a1/
LA  - cs
ID  - PMFA_2023_68_4_a1
ER  - 
%0 Journal Article
%A Drozd, Zdeněk
%A Trojanová, Zuzanka
%A Lukáč, Pavel
%T Hořčíkové nanokompozity - materiály se slibnou budoucností
%J Pokroky matematiky, fyziky a astronomie
%D 2023
%P 227-245
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/PMFA_2023_68_4_a1/
%G cs
%F PMFA_2023_68_4_a1
Drozd, Zdeněk; Trojanová, Zuzanka; Lukáč, Pavel. Hořčíkové nanokompozity - materiály se slibnou budoucností. Pokroky matematiky, fyziky a astronomie, Tome 68 (2023) no. 4, pp. 227-245. http://geodesic.mathdoc.fr/item/PMFA_2023_68_4_a1/

[1] Arsenault, R. J., Shi, N.: Dislocation generation due to differences between the coefficients of thermal expansion. Mat. Sci. Eng. 81 (1986), 175–187. | DOI

[2] EduPack: CES EduPack 2014. Dostupné z: https://www.cambridge network.co.uk/node/476624

[3] Clyne, T. W.: A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch. Mater. Sci. Eng. A 122 (1989), 183–192. | DOI

[4] Clyne, T. W., Whithers, P. J.: An introduction to metal matrix composites. Cambridge University Press, 1993.

[5] Cole, C. D.: Magnesium. Chem. Eng. News Archive 81 (2003), 52–53.

[6] Drápala, J., Kuchař, L., Tomášek, K., Trojanová, Z.: Hořčík, jeho slitiny a binární systémy hořčík–příměs. VŠB-TU Ostrava, 2004.

[7] Drozd, Z., Trojanová, Z., Arlic, U., Kasakewitsch, A., Dash, K.: Effect of hexagonal boron nitride and graphite nanoparticles on the mechanical and physical properties of magnesium. IOP Conf. Series: Materials Science and Engineering 219 (2017), article no. 012017.

[8] Drozd, Z., Trojanová, Z., Lukáč, P., Kučeráková, M., Václavů, T.: Mechanical and physical properties of selected magnesium base nanocomposites. IOP Conf. Series: Materials Science and Engineering 372 (2018), article no. 012004.

[9] Ferkel, H., Mordike, B. L.: Magnesium strengthened by SiC nanoparticles. Mater. Sci. Eng. A 298 (2001), 193–199. | DOI

[10] Friedrich, H. E., Mordike, B. L.: Magnesium technology: Metallurgy, design data, applications. Springer, 2006.

[11] Fukuda, H., Chou, T. W.: An advanced shear-lag model applicable to discontinuos fiber composites. J. Compos. Mater. 15 (1981), 79–91. | DOI

[12] Lloyd, D. J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39 (1994), 1–23. | DOI

[13] Luster, J. W., Thumann, M., Baumann, R.: Mechanical properties of aluminium alloy 6061-Al_2O_3 composites. Mater. Sci. Technol. 9 (1993), 853–862. | DOI

[14] Naser, J., Riehemann, W., Ferkel, H.: Dispersion hardening of metals by nanoscaled ceramic powders. Mater. Sci. Eng. A 234–236 (1997), 467–469. | DOI

[15] Seetharaman, S., Tekumalla, S., Gupta, M.: Magnesium based nanocomposites. Advances and applications. IOP Publishing, 2020.

[16] Srba, O.: Komplexní studium jemnozrnných polykrystalů Cu a slitiny CuZr připravených metodami ECAP a HTP. Disertační práce. MFF UK, 2010.

[17] Therumarajah, A., Koltun, P.: Is there an enviromental advantage of using magnesium components for light-weighting cars?. J. Clean. Prod. 15 (2007), 1007–1013. | DOI

[18] Trojanová, Z., Drozd, Z., Minárik, P., Lukáč, P., Kasakewitsch, A.: Influence of texture on the thermal expansion coefficient of Mg/BN nanocomposite. Thermochimica Acta 644 (2016), 69–75. | DOI

[19] Trojanová, Z., Lukáč, P., Száraz, Z., Drozd, Z.: Mechanical and acoustic properties of magnesium alloys based (nano) composites prepared by powder metallurgical routs. In: Monteiro, W. A. (ed.): Light Metal Alloys Applications, IntechOpen, 2014, 163–197.