Nobelova cena za rok 2020: V centru naší galaxie je cosi temného a těžkého
Pokroky matematiky, fyziky a astronomie, Tome 66 (2021) no. 4, pp. 221-229 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Polovina Nobelovy ceny za fyziku byla v roce 2020 udělena Reinhardu Genzelovi a Andree Ghez za nepřímá pozorování superhmotné černé díry v centru Mléčné dráhy. Skupiny Genzela a Ghez totiž od devadesátých let pozorovaly orbitální dynamiku hvězd v našem galaktickém centru, z níž byly schopné vydedukovat přítomnost nesmírně hmotného a kompaktního tělesa, které hvězdy přitahuje. K tomu ale nejdříve musely vyvinout nové techniky pozorování, například tzv. adaptivní optiku, či mít "štěstí na hvězdy", které černou díru obíhají. To vše, včetně nejnovějšího vývoje v pozorování z roku 2018, je shrnuto v tomto článku.
Polovina Nobelovy ceny za fyziku byla v roce 2020 udělena Reinhardu Genzelovi a Andree Ghez za nepřímá pozorování superhmotné černé díry v centru Mléčné dráhy. Skupiny Genzela a Ghez totiž od devadesátých let pozorovaly orbitální dynamiku hvězd v našem galaktickém centru, z níž byly schopné vydedukovat přítomnost nesmírně hmotného a kompaktního tělesa, které hvězdy přitahuje. K tomu ale nejdříve musely vyvinout nové techniky pozorování, například tzv. adaptivní optiku, či mít "štěstí na hvězdy", které černou díru obíhají. To vše, včetně nejnovějšího vývoje v pozorování z roku 2018, je shrnuto v tomto článku.
@article{PMFA_2021_66_4_a1,
     author = {Witzany, Vojt\v{e}ch},
     title = {Nobelova cena za rok 2020: {V} centru na\v{s}{\'\i} galaxie je cosi temn\'eho a t\v{e}\v{z}k\'eho},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {221--229},
     year = {2021},
     volume = {66},
     number = {4},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2021_66_4_a1/}
}
TY  - JOUR
AU  - Witzany, Vojtěch
TI  - Nobelova cena za rok 2020: V centru naší galaxie je cosi temného a těžkého
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2021
SP  - 221
EP  - 229
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PMFA_2021_66_4_a1/
LA  - cs
ID  - PMFA_2021_66_4_a1
ER  - 
%0 Journal Article
%A Witzany, Vojtěch
%T Nobelova cena za rok 2020: V centru naší galaxie je cosi temného a těžkého
%J Pokroky matematiky, fyziky a astronomie
%D 2021
%P 221-229
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/PMFA_2021_66_4_a1/
%G cs
%F PMFA_2021_66_4_a1
Witzany, Vojtěch. Nobelova cena za rok 2020: V centru naší galaxie je cosi temného a těžkého. Pokroky matematiky, fyziky a astronomie, Tome 66 (2021) no. 4, pp. 221-229. http://geodesic.mathdoc.fr/item/PMFA_2021_66_4_a1/

[1] Abuter, R., Amorim, A., Anugu, N., Bauböck, M., Benisty, M., Berger, J., Blind, N., Bonnet, H., Brandner, W., Buron, A.: Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 615 (2018), L15. | DOI

[2] Abuter, R., Amorim, A., Bauböck, M., Berger, J., Bonnet, H., Brandner, W., Cardoso, V., Clénet, Y., de Zeeuw, P., Dexter, J.: Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 636 (2020), L5. | DOI

[3] Abuter, R., Amorim, A., Bauböck, M., Berger, J., Bonnet, H., Brandner, W., Clénet, Y., Du Foresto, V. C., de Zeeuw, P., Deen, C.: Detection of orbital motions near the last stable circular orbit of the massive black hole Sgr A*. Astron. Astrophys. 618 (2018), L10. | DOI

[4] Balick, B., Brown, R. L.: Intense sub-arcsecond structure in the galactic center. Astrophys. J. 194 (1974), 265–270. | DOI

[5] Carr, B., Kohri, K., Sendouda, Y., Yokoyama, J.: New cosmological constraints on primordial black holes. Phys. Rev. D 81 (2010), 104019.

[6] Coleman Miller, M., Colbert, E. J.: Intermediate-mass black holes. Int. J. Mod. Phys. D 13 (2004), 1–64. | DOI

[7] Do, T., Hees, A., Ghez, A., Martinez, G. D., Chu, D. S., Jia, S., Sakai, S., Lu, J. R., Gautam, A. K., O’neil, K. K.: Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole. Science 365 (2019), 664–668. | DOI

[8] Eckart, A., Genzel, R.: Observations of stellar proper motions near the galactic centre. Nature 383 (1996), 415–417. | DOI

[9] Frank, J., King, A., Raine, D.: Accretion power in astrophysics. Cambridge University Press, 2002.

[10] Genzel, R.: Nobel lecture: A forty year journey. [online]. https://www.nobelprize.org/prizes/physics/2020/genzel/lecture/

[11] Genzel, R., Townes, C.: Physical conditions, dynamics, and mass distribution in the center of the Galaxy. Annu. Rev. Astron. Astrophys. 25 (1987), 377–423. | DOI

[12] Ghez, A.: Nobel lecture: From the possibility to the certainty of a supermassive black hole. [online]. https://www.nobelprize.org/prizes/physics/2020/ghez/lecture/

[13] Ghez, A., Duchêne, G., Matthews, K., Hornstein, S., Tanner, A., Larkin, J., Morris, M., Becklin, E., Salim, S., Kremenek, T.: The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: a paradox of youth. Astrophys. J. Lett. 586 (2003), L127–L131. | DOI

[14] Ghez, A. M., Klein, B., Morris, M., Becklin, E.: High proper-motion stars in the vicinity of Sagittarius A*: Evidence for a supermassive black hole at the center of our galaxy. Astrophys. J. 509 (1998), 678–686. | DOI

[15] Chandrasekhar, S.: The mathematical theory of black holes. Oxford University Press, 1998.

[16] Lewin, W. H., van den Heuvel, E. P., van Paradijs, J.: X-ray binaries. Cambridge University Press, 1997.

[17] Malik, J.: Yields of the Hiroshima and Nagasaki nuclear explosions. Technical report. Los Alamos National Laboratory, Los Alamos, 1985.

[18] Melia, F.: The black hole at the center of our galaxy. Princeton University Press, 2018.

[19] Miller, M. C., Miller, J. M.: The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 548 (2015), 1–34. | DOI | MR

[20] Nobel Committee for Physics: Scientific Background on the Nobel Prize in Physics 2020: Theoretical foundations for black holes and the supermassive compact object at the galactic centre. [online]. http://nobelprize.org/uploads/2020/10/advanced-physicsprize2020.pdf

[21] Rees, M. J.: Black hole models for active galactic nuclei. Annu. Rev. Astron. Astrophys. 22 (1984), 471–506. | DOI

[22] Rousset, G., Lacombe, F., Puget, P., Hubin, N. N., Gendron, E., Fusco, T., Arsenault, R., Charton, J., Feautrier, P., Gigan, P.: NAOS – the first AO system of the VLT: on-sky performance. In: Wizinowich, P. L., Bonaccini, D.: Adaptive Optical System Technologies II. International Society for Optics and Photonics, 2003, 140–149.

[23] Shapley, H.: A determination of the distance to the galactic center. Proc. Natl. Acad. Sci. U.S.A. 25 (1939), 113–118. | DOI

[24] Shields, G. A.: A brief history of active galactic nuclei. Publ. Astron. Soc. Pac. 111 (1999), 661–678. | DOI

[25] Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M., Lenzen, R.: A star in a 15.2-year orbit around the supermassive black hole at the centre of the milky way. Nature 419 (2002), 694–696. | DOI

[26] Volonteri, M.: Formation of supermassive black holes. Astron. Astrophys. Rev. 18 (2010), 279–315. | DOI

[27] Wizinowich, P., Acton, D., Shelton, C., Stomski, P., Gathright, J., Ho, K., Lupton, W., Tsubota, K., Lai, O., Max, C.: First light adaptive optics images from the Keck II telescope: a new era of high angular resolution imagery. Publ. Astron. Soc. Pac. 112 (2000), 315–319. | DOI

[28] Yuan, F., Narayan, R.: Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52 (2014), 529–588. | DOI