@article{PMFA_2021_66_1_a0,
author = {Ortaggio, Marcello and Pravda, Vojt\v{e}ch},
title = {Abelovu cenu za rok 2019 z{\'\i}skala {Karen} {Uhlenbeckov\'a}},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {1--10},
year = {2021},
volume = {66},
number = {1},
zbl = {07675623},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2021_66_1_a0/}
}
Ortaggio, Marcello; Pravda, Vojtěch. Abelovu cenu za rok 2019 získala Karen Uhlenbecková. Pokroky matematiky, fyziky a astronomie, Tome 66 (2021) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/PMFA_2021_66_1_a0/
[1] Al-Khalili, J.: A biography of Karen Uhlenbeck. [online]. https://www.abelprize.no/c73996/binfil/download.php?tid=74107
[2] Ambrose, S.: Journeys of women in science and engineering, no universal constants. Temple University Press, Philadelphia, 1997.
[3] Donaldson, S.: Karen Uhlenbeck and the Calculus of Variations. Notices Amer. Math. Soc. 66 (2019), 303–313. | DOI | MR
[4] Hopf, H., Rinow, W.: Ueber den Begriff der vollständigen differentialgeometrischen Fläche. Comm. Math. Helv. 3 (1931), 209–225. | DOI | MR
[5] Isenberg, C.: The science of soap films and soap bubbles. Dover Publications, New York, 1992. | MR
[6] Lübke, M., Teleman, A.: The Kobayashi–Hitchin correspondence. World Scientific, Singapore, 1995. | MR
[7] O’Connor, J. J., Robertson, E.: Karen Keskulla Uhlenbeck. [online]. https://mathshistory.st-andrews.ac.uk/Biographies/UhlenbeckKaren/
[8] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. of Math. 113 (1981), 1–24. | DOI | MR
[9] Sibner, L. M., Sibner, R. J., Uhlenbeck, K.: Solutions to Yang-Mills equations that are not self-dual. Proc. Natl. Acad. Sci. USA 86 (1989), 8610–8613. | DOI | MR
[10] Uhlenbeck, K. K.: Connections with $L^p$ bounds on curvature. Comm. Math. Phys. 83 (1982), 31–42. | DOI | MR
[11] Uhlenbeck, K. K.: Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83 (1982), 11–29. | DOI | MR
[12] Uhlenbeck, K., Yau, S. T.: On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39 (1986), S257–S293. | DOI | MR
[13] Uhlenbeck, K., Yau, S. T.: A note on our previous paper: On the existence of Hermitian Yang-Mills connections in stable vector bundles. Comm. Pure Appl. Math. 42 (1989), 703–707. | DOI | MR
[14] Zhang, D.: C. N. Yang a současná matematika. Pokroky Mat. Fyz. Astronom. 39 (1994), 305–317. | MR