@article{PMFA_2020_65_3_a2,
author = {\v{C}erm\'ak, Jan and Kisela, Tom\'a\v{s} and Nechv\'atal, Lud\v{e}k},
title = {N\v{e}kolik pozn\'amek ke zlomkov\'emu kalkulu},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {157--174},
year = {2020},
volume = {65},
number = {3},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2020_65_3_a2/}
}
Čermák, Jan; Kisela, Tomáš; Nechvátal, Luděk. Několik poznámek ke zlomkovému kalkulu. Pokroky matematiky, fyziky a astronomie, Tome 65 (2020) no. 3, pp. 157-174. http://geodesic.mathdoc.fr/item/PMFA_2020_65_3_a2/
[1] Cong, N. D., Doan, T. S., Siegmund, S., Tuan, H. T.: Linearized asymptotic stability for fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 39 (2016), 1–13. | DOI | MR
[2] Čermák, J., Nechvátal, L.: The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system. Nonlinear Dynam. 87 (2017), 939–954. | DOI | MR
[3] Diethelm, K.: The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer, Berlin, 2010. | MR
[4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam, 2006. | MR
[5] Kuczma, M., Choczewski, B., Ger, R.: Iterative functional equations. Cambridge University Press, 1990. | MR
[6] Matignon, D.: Stability results for fractional differential equations with applications to control processing. Comput. Engrg. Systems Appl. (Lille) (1996), 963–968.
[7] Oldham, K., Spanier, J.: The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Math. Sci. Eng. 111, Academic Press, New York–London, 1974. | MR
[8] Podlubný, I.: Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, Academic Press, San Diego, 1998. | MR
[9] Veselý, J.: Poznámky k historii funkce gama. In: Bečvář, J., Fuchs, E. (eds.): Člověk – umění – matematika. Sborník přednášek z letních škol Historie matematiky, Dějiny matematiky 4. Prometheus, Praha, 1996, 49–71. | MR