@article{PMFA_2019_64_4_a3,
author = {Slav{\'\i}k, Anton{\'\i}n},
title = {Geometrick\'e d\r{u}kazy v matematick\'e anal\'yze},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {229--237},
year = {2019},
volume = {64},
number = {4},
zbl = {07675639},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2019_64_4_a3/}
}
Slavík, Antonín. Geometrické důkazy v matematické analýze. Pokroky matematiky, fyziky a astronomie, Tome 64 (2019) no. 4, pp. 229-237. http://geodesic.mathdoc.fr/item/PMFA_2019_64_4_a3/
[1] Courant, R.: Differential and integral calculus, Volume 1. 2nd English edition, Blackie, 1937. | MR
[2] Das, J.: Some generalizations of Rolle’s theorem. Int. J. Math. Educ. Sci. Tech. 35 (2004), 604–608. | DOI
[3] Edwards, C. H.: The historical development of the calculus. Springer-Verlag, 1979. | MR | Zbl
[4] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes integral. Theory and applications. World Scientific, 2019. | MR
[5] Nelsen, R.: Proofs without words. Exercises in visual thinking. Mathematical Association of America, 1993. | MR
[6] Nelsen, R.: Proofs without words II. More exercises in visual thinking. Mathematical Association of America, 2000. | MR
[7] Netuka, I.: Integrální počet. Vícerozměrný Lebesgueův integrál. MatfyzPress, 2016.
[8] Swann, H.: Commentary on rethinking rigor in calculus: The role of the mean value theorem. Amer. Math. Monthly 104 (1997), 241–245. | DOI | MR
[9] Tolsted, E.: An elementary derivation of the Cauchy, Hölder, and Minkowski inequalities from Young’s inequality. Math. Mag. 37 (1964), 2–12. | DOI | MR
[10] Veselý, J.: Základy matematické analýzy, díl druhý. MatfyzPress, 2009.
[11] Young, W. H.: On classes of summable functions and their Fourier series. Proc. R. Soc. Lond. Ser. A 87 (1912), 225–229.