@article{PMFA_2019_64_4_a2,
author = {Proch\'azkov\'a, Zuzana and \v{S}\'acha, Petr},
title = {Nambova mechanika v dynamice atmosf\'ery},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {220--228},
year = {2019},
volume = {64},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2019_64_4_a2/}
}
Procházková, Zuzana; Šácha, Petr. Nambova mechanika v dynamice atmosféry. Pokroky matematiky, fyziky a astronomie, Tome 64 (2019) no. 4, pp. 220-228. http://geodesic.mathdoc.fr/item/PMFA_2019_64_4_a2/
[1] Badin, G., Barry, A. M.: Collapse of generalized Euler and surface quasigeostrophic point vortices. Phys. Rev. E 98 (2018), 023110. | DOI
[2] Bihlo, A.: Rayleigh–Bénard convection as a Nambu-metriplectic problem. J. Phys. A 41 (2008), 292001. | DOI | MR
[3] Blender, R., Badin, G.: Construction of Hamiltonian and Nambu forms for the shallow water equations. Fluids 2 (2017), 24. | DOI
[4] Gaßmann, A.: A global hexagonal C-grid non-hydrostatic dynamical core (icon-iap) designed for energetic consistency. Q. J. R. Meteorol. Soc. 139 (2013), 152–175. | DOI
[5] Gaßmann, A.: Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives. Meteorol. Z. 23 (2014), 467–481. | DOI
[6] Hirt, M., Schielicke, L., Müller, A., Névir, P.: Statistics and dynamics of blockings with a point vortex model. Tellus A 70 (2018), 1–20. | DOI
[7] Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 7 (1973), 2405–2412. | DOI | MR | Zbl
[8] Névir, P., Blender, R.: A Nambu representation of incompressible hydrodynamics using helicity and enstrophy. J. Phys. A 26 (1993), L1189. | MR
[9] Névir, P., Sommer, M.: Energy-vorticity theory of ideal fluid mechanics. J. Atmos. Sci. 66 (2009), 2073–2084. | DOI
[10] Procházková, Z.: Application of the Nambu mechanics formalism in atmospheric dynamics. Bakalářská práce. MFF UK, 2019.
[11] Salazar, R., Kurgansky, M. V.: Nambu brackets in fluid mechanics and magnetohydrodynamics. J. Phys. A 43 (2010), 305501. | MR
[12] Salmon, R.: A general method for conserving quantities related to potential vorticity in numerical models. Nonlinearity 18 (2005), R1. | DOI | MR
[13] Sommer, M., Névir, P.: A conservative scheme for the shallow-water system on a staggered geodesic grid based on a Nambu representation. Q. J. R. Meteorol. Soc. 135 (2009), 485–494. | DOI