@article{PMFA_2019_64_2_a1,
author = {Andres, Jan},
title = {\v{S}arkovsk\'eho v\v{e}ta a diferenci\'aln{\'\i} rovnice {III}},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {91--103},
year = {2019},
volume = {64},
number = {2},
zbl = {07675637},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2019_64_2_a1/}
}
Andres, Jan. Šarkovského věta a diferenciální rovnice III. Pokroky matematiky, fyziky a astronomie, Tome 64 (2019) no. 2, pp. 91-103. http://geodesic.mathdoc.fr/item/PMFA_2019_64_2_a1/
[1] Alsedà, L., Llibre, J., Misiurewicz, M.: Combinatorial dynamics and entropy in dimension one. 2nd ed., World Scientific, Singapore, 2000. | MR
[2] Andres, J.: Šarkovského věta a diferenciální rovnice. Pokroky Mat. Fyz. Astronom. 49 (2004), 151–159.
[3] Andres, J.: Šarkovského věta a diferenciální rovnice, II. Pokroky Mat. Fyz. Astronom. 56 (2011), 143–149.
[4] Andres, J.: On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory. Topology Appl. 221 (2017), 596–609. | DOI | MR
[5] Andres, J.: Randomization of Sharkovsky-type results on the circle. Stoch. Dyn. 17 (2017), 1–21. | DOI | MR
[6] Andres, J.: Randomized Sharkovsky-type theorems and their application to random impulsive differential equations and inclusions on tori. Stoch. Dyn. 19 (2019), 1–30. | DOI | MR
[7] Andres, J.: Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators. Topology Appl. 255 (2019), 126–140. | DOI | MR
[8] Andres, J., Bednařík, D., Pastor, K.: On the notion of derivo-periodicity. J. Math. Anal. Appl. 303 (2005), 405–417. | DOI | MR
[9] Andres, J., Fišer, J.: Sharkovsky-type theorems on $S^1$ applicable to differential equations. Internat. J. Bifur. Chaos. 27 (2017), 1–21. | DOI | MR
[10] Andres, J., Górniewicz, L.: Topological fixed point principles for boundary value problems. Kluwer, Dordrecht, 2003. | MR
[11] Andres, J., Pastor, K.: Block–Sharkovsky type theorem on the circle applicable to differential equations and inclusions. Internat. J. Bifur. Chaos 28 (4) (2018), 1850056, 1–11. | DOI | MR
[12] Andres, J., Pastor, K.: A multivalued version of the Block–Sharkovsky theorem applicable to differential equations on the circle. Internat. J. Bifur. Chaos 28 (11) (2018), 1–15. | MR
[13] Andres, J., Pastor, K.: Sharp Block–Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions. Internat. J. Bifur. Chaos (2019), v tisku. | MR
[14] Andres, J., Pastor, K., Šnyrychová, P.: A multivalued version of Sharkovskii’s theorem holds with at most two exceptions. J. Fixed Point Theory Appl. 2 (2007), 153–170. | DOI | MR
[15] Bernhardt, C.: Periodic orbits of continuous mappings of the circle without fixed points. Ergodic Theory Dynam. Systems 1 (1981), 413–417. | DOI | MR
[16] Block, L.: Periods of periodic points of maps of the circle which have a fixed point. Proc. Amer. Math. Soc. 82 (1981), 481–486. | DOI | MR
[17] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.: Periodic points and topological entropy of one-dimensional maps. In: Nitecki, Z., Robinson, C. (eds.): Global Theory of Dynamical Systems, Lect. Notes in Math. 819, Springer, Berlin, 1980, 18–34. | MR
[18] Brown, R. F., Furi, M., Górniewicz, L., Jiang, B.: Handbook of topological fixed point theory. Springer, Berlin, 2005. | MR
[19] Coddington, E. A., Levinson, N.: Theory of differential equations. McGraw-Hill, New York, 1955. | MR
[20] Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore. J. Math. Pures Appl. 11 (1932), 333–376.
[21] Efremova, L. S.: Periodičeskije orbity i stěpeň nepreryvnogo otobraženija okružnosti. Dif. Integr. Urav. (Gor’kii) 2 (1978), 109–115.
[22] Farkas, M.: Periodic motions. Springer, Berlin, 1994. | MR
[23] Hasselblatt, B., Katok, A.: A first course in dynamics: with a panorama of recent developments. Cambridge Univ. Press, Cambridge, 2003. | MR
[24] van Kampen, E. R.: The topological transformations of a simple closed curve into itself. Amer. J. Math. 57 (1935), 142–152. | DOI | MR
[25] Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Cambridge Univ. Press, Cambridge, 1995. | MR
[26] Misiurewicz, M.: Periodic orbits of maps of degree one of a circle. Ergodic Theory Dynam. Systems 2 (1982), 221–227. | DOI | MR
[27] Poincaré, H.: Sur les courbes définies par les équations différentielles (iii). J. Math. Pures Appl. 1 (1885), 167–244.
[28] Siegberg, H. W.: Chaotic mappings on ${S}^1$, periods one, two, three imply chaos on ${S}^1$. In: Proc. Conf. Numerical solutions of nonlinear equations (Bremen, 1980), Lect. Notes in Math. 878, Springer, Berlin, 1981, 351–370. | MR
[29] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija prjamoj v sebja. Ukrain. Matem. Žurn. 1 (1964), 61–71.
[30] Zhao, X.: Periodic orbits with least period three on the circle. Fixed Point Theory Appl. (Article ID 194875) (2008), 1–8. | MR