@article{PMFA_2018_63_4_a2,
author = {\v{S}t\v{e}p\'anov\'a, Martina},
title = {Lepidoptera mathematica aneb rozli\v{c}n\'a zobecn\v{e}n{\'\i} v\v{e}ty o mot\'ylovi},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {263--281},
year = {2018},
volume = {63},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a2/}
}
Štěpánová, Martina. Lepidoptera mathematica aneb rozličná zobecnění věty o motýlovi. Pokroky matematiky, fyziky a astronomie, Tome 63 (2018) no. 4, pp. 263-281. http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a2/
[1] Bezverkhnyev, Y.: Haruki’s lemma and a related locus problem. Forum Geom. 8 (2008), 63–72. | MR
[2] Bogomolny, A.: Interactive mathematics miscellany and puzzles: William Wallace proof of the butterfly theorem. [online]. Dostupné z: https://www.cut-the-knot.org/pythagoras/WilliamWallaceButterfly.shtml
[3] Bogomolny, A.: Interactive mathematics miscellany and puzzles: The butterfly theorem. [online]. Dostupné z: https://www.cut-the-knot.org/pythagoras/Butterfly.shtml
[4] Bogomolny, A.: Interactive mathematics miscellany and puzzles: A better butterfly theorem. [online]. Dostupné z: http://www.cut-the-knot.org/pythagoras/BetterButterfly.shtml
[5] Celli, M.: A proof of the butterfly theorem using the similarity factor of the two wings. Forum Geom. 16 (2016), 337–338. | MR
[6] Coxeter, H. S. M., Greitzer, S. L.: Geometry revisited. Mathematical Association of America, Washington, 1967. | MR
[7] Craik, A. D. D., O’Connor, J. J.: Some unknown documents associated with William Wallace (1768–1843). BSHM Bull. 26 (2011), 17–28. | DOI | MR
[8] Čerin, Z.: A generalization of the butterfly theorem from circles to conics. Math. Commun. 6 (2001), 161–164. | MR
[9] Donaldo, C.: A proof of the butterfly theorem using Ceva’s theorem. Forum Geom. 16 (2016), 185–186. | MR
[10] Klamkin, M. S.: An extension of the butterfly problem. Math. Mag. 38 (1965), 206–208. | DOI | MR
[11] Kung, S.: A butterfly theorem for quadrilaterals. Math. Mag. 78 (2005), 314–316. | DOI
[12] Prasolov, V. V.: Problems in planimetry. Nauka, Moscow, 1986.
[13] Shklyarsky, O., Chentsov, N. N., Yaglom, I. M.: Selected problems and theorems of elementary mathematics. Moscow, 1952.
[14] Sledge, J.: A generalization of the butterfly theorem. J. Undergraduate Math. 5 (1973), 3–4.
[15] Sliepčević, A.: A new generalization of the butterfly theorem. J. Geom. Graph. 6 (2002), 61–68. | MR
[16] Štěpánová, M.: Věta o motýlech. In: Cesty k matematice III, Hromadová, J., Slavík, A. (eds.), MatfyzPress, Praha, 2018, 103–124.
[17] Trí, Trần Thúc Minh: Mathematics stack exchange: Generalized butterfly theorem. [online]. Dostupné z: https://math.stackexchange.com/questions/2640237/generalized-butterfly-theorem
[18] Volenec, V.: A generalization of the butterfly theorem. Math. Commun. 5 (2000), 157–160. | MR
[19] Volenec, V.: The butterfly theorem for conics. Math. Commun. 7 (2002), 35–38. | MR