@article{PMFA_2018_63_4_a1,
author = {Homolka, Radim and Koz\'akov\'a, Veronika and Suja, Maty\'a\v{s} and Pl\'a\v{s}ek, Jarom{\'\i}r},
title = {Fluorescen\v{c}n{\'\i} proteiny - z\'a\v{r}{\'\i}c{\'\i} makromolekuly odhaluj{\'\i}c{\'\i} bun\v{e}\v{c}n\'a tajemstv{\'\i}},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {245--262},
year = {2018},
volume = {63},
number = {4},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a1/}
}
TY - JOUR AU - Homolka, Radim AU - Kozáková, Veronika AU - Suja, Matyáš AU - Plášek, Jaromír TI - Fluorescenční proteiny - zářící makromolekuly odhalující buněčná tajemství JO - Pokroky matematiky, fyziky a astronomie PY - 2018 SP - 245 EP - 262 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a1/ LA - cs ID - PMFA_2018_63_4_a1 ER -
%0 Journal Article %A Homolka, Radim %A Kozáková, Veronika %A Suja, Matyáš %A Plášek, Jaromír %T Fluorescenční proteiny - zářící makromolekuly odhalující buněčná tajemství %J Pokroky matematiky, fyziky a astronomie %D 2018 %P 245-262 %V 63 %N 4 %U http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a1/ %G cs %F PMFA_2018_63_4_a1
Homolka, Radim; Kozáková, Veronika; Suja, Matyáš; Plášek, Jaromír. Fluorescenční proteiny - zářící makromolekuly odhalující buněčná tajemství. Pokroky matematiky, fyziky a astronomie, Tome 63 (2018) no. 4, pp. 245-262. http://geodesic.mathdoc.fr/item/PMFA_2018_63_4_a1/
[1] Alberts, B.: Molecular biology of the cell. 6th ed., Garland Science, New York and Abingdon, 2014.
[2] Alieva, N. O.: Diversity and evolution of coral fluorescent proteins. PLOS ONE 3 (2008), e2680. | DOI
[3] Andresen, M.: Structural basis for reversible photoswitching in Dronpa. Proc. Natl. Acad. Sci. USA 104 (2007), 13005–13009. | DOI
[4] Arai, Y., Nagai, T.: Extensive use of FRET in biological imaging. Microscopy 62 (2013), 419–428. | DOI
[5] Betzig, E.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313 (2006), 1642–1645. | DOI
[6] Carisey, A.: Fluorescence recovery after photobleaching. In: Cell Migration Methods in Molecular Biology (Methods and Protocols), Humana Press, 2011.
[7] Cody, C.: Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32 (1993), 1212–1218. | DOI
[8] Cubitt, A. B.: Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20 (1995), 448–455. | DOI
[9] Černý, J.: Zelený fluorescenční protein. Vesmír 88 (2009), 228–231.
[10] Day, R. N., Davidson, M. W.: The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38 (2009), 2887–2921. | DOI
[11] Ehrenberg, M.: Scientific background on the Nobel Prize in chemistry 2008. The Royal Swedish Academy of Sciences, Stockholm, 2008.
[12] Heim, R., Cubitt, A. B., Tsien, R. Y.: Improved green fluorescence. Nature 373 (1995), 663–664. | DOI
[13] Heim, R., Prasher, D. C., Tsien, R. Y.: Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91 (1994), 12501–12504. | DOI
[14] Chalfie, M.: Green fluorescent protein. Photochem. Photobiol. 62 (1995), 651–656. | DOI
[15] Chalfie, M.: Green fluorescent protein as a marker for gene expression. Science 263 (1994), 802–805. | DOI
[16] Chudakov, D. M.: Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90 (2010), 1103–1163. | DOI
[17] Kanehira, K., Uchida, Y., Saito, T.: Visualization of avian influenza virus infected cells using self-assembling fragments of green fluorescent protein. Electron. J. Biotechnol. 19 (2016), 61–64. | DOI
[18] Kimmel, C. B.: Stages of embryonic development of the zebrafish. Dev. Dyn. 203 (2002), 253–310. | DOI
[19] Kiyonaka, S.: Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat. Methods 10 (2013), 1232–1238. | DOI
[20] Koldenkova, V. P., Nagai, T.: Genetically encoded Ca$^{2+}$ indicators: Properties and evaluation. Biochim. Biophys. Acta 1833 (2013), 1787–1797. | DOI
[21] Labas, Y. A.: Diversity and evolution of the green fluorescent protein family. Proc. Natl. Acad. Sci. USA 99 (2002), 4256–4261. | DOI
[22] Lakowicz, J. R.: Principles of fluorescence spectroscopy. Springer US, Boston, 2006.
[23] Lippincott-Schwartz, J., Patterson, G. H.: Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19 (2009), 555–565. | DOI
[24] Livet, J.: Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450 (2007), 56–62. | DOI
[25] Lukyanov, K. A.: Photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6 (2005), 885–891. | DOI
[26] Martynov, V. I.: Genetically encoded fluorescent indicators for live cell pH imaging. Biochim. Biophys. Acta 1862 (2018), 2924–2939. | DOI
[27] Merola, F.: Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants. Methods Appl. Fluoresc. 4 (2016), [online] 012001. | DOI
[28] Miesenbock, G., De Angelis, D. A., Rothman, J. E.: Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394 (1998), 192–195. | DOI
[29] Mishin, A. S.: Novel uses of fluorescent proteins. Curr. Opin. Chem. Biol. 27 (2015), 1–9. | DOI
[30] Miyawaki, A.: Fluorescent indicators for Ca$^{2+}$ based on green fluorescent proteins and calmodulin. Nature 388 (1997), 882–887. | DOI
[31] Morise, H.: Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13 (1974), 2656–2662. | DOI
[32] Orij, R.: In vivo measurement of cytosolic and mitochondrial pH using a pHsensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155 (2009), 268–278. | DOI
[33] Ormo, M.: Crystal structure of the Aequorea victoria green fluorescent protein. Science 273 (1996), 1392–1395. | DOI
[34] Plášek, J.: Optická mikroskopie od van Leeuwenhoeka k Nobelově ceně za chemii v roce 2014. Čs. čas. fyz. 65 (2015), 365–369.
[35] Plášek, J.: Superrozlišení v optické mikroskopii: Nobelova cena za chemii za rok 2014. Pokroky Mat. Fyz. Astronom. 60 (2015), 19–38.
[36] Reits, E. A. J., Neefjes, J. J.: From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3 (2001), E145–E147. | DOI
[37] Roda, A.: Discovery and development of the green fluorescent protein, GFP: the 2008 Nobel Prize. Anal. Bioanal. Chem. 396 (2010), 1619–1622.
[38] San Pietro, R. M., Prendergast, F. G., Ward, W. W.: Sequence of the chromogenic hexapeptide of Renilla green fluorescent protein. Photochem. Photobiol. 57 (1993), S63.
[39] Shaner, N. C.: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein. Nat. Biotechnol. 22 (2004), 1567–1572. | DOI
[40] Shaner, N. C., Steinbach, P. A., Tsien, R. Y.: A guide to choosing fluorescent proteins. Nat. Methods 2 (2005), 905–909. | DOI
[41] Shimizu, K.: Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology. Bioinspir. Biomim. 13 (2018), 041003. | DOI
[42] Shimomura, O.: The discovery of aequorin and green fluorescent protein. J. Microscop. 217 (2005), 3–15. | DOI | MR
[43] Terskikh, A.: “Fluorescent timer”: Protein that changes color with time. Science 290 (2000), 1585–1588. | DOI
[44] Thorn, K.: Genetically encoded fluorescent tags. Mol. Biol. Cell 28 (2017), 848–857. | DOI
[45] Tsien, R. Y.: Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48 (2009), 5612–5626. | DOI
[46] Tsien, R. Y.: The green fluorescent protein. Annu. Rev. Biochem. 67 (1998), 509–544. | DOI
[47] Verkhusha, V. V.: Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem. Biol. 11 (2004), 845–854. | DOI
[48] Wallrabe, H., Periasamy, A.: Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16 (2005), 19–27. | DOI
[49] Wan, H. Y.: Generation of two-color transgenic zebrafish using the green and red fluorescent protein reporter genes gfp and rfp. Mar. Biotechnol. 4 (2002), 146–154. | DOI
[50] Wang, Y. X., Shyy, J. Y. J., Chien, S.: Fluorescence proteins, live-cell imaging, and mechanobiology: Seeing is believing. Annu. Rev. Biomed. Eng. 10 (2008), 1–38. | DOI
[51] Ward, W. W.: Spectrophotometric identity of the energy-transfer chromophores in Renilla and Aequorea green-fluorescent protein. Photochem. Photobiol. 31 (1980), 611–615. | DOI
[52] Warner, K. D.: Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21 (2014), 658–663. | DOI
[53] Weissman, T. A., Pan, Y. A.: Brainbow: New resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics 199 (2015), 293–306. | DOI
[54] Yang, F., Moss, L. G., Phillips, G. N.: The molecular structure of green fluorescent protein. Nat. Biotechnol. 14 (1996), 1246–1251. | DOI
[55] Zimmer, M.: Green fluorescent protein: (GFP): Applications, structure, and related photophysical behavior. Chem. Rev. 102 (2002), 759–781.
[56] Zimmer, M.: GFP – from jellyfish to the Nobel prize and beyond. Chem. Soc. Rev. 38 (2009), 2823–2832. | DOI