@article{PMFA_2018_63_2_a4,
author = {Chybov\'a, Lucie},
title = {\v{S}achov\'e \'ulohy v kombinatorice},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {125--147},
year = {2018},
volume = {63},
number = {2},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2018_63_2_a4/}
}
Chybová, Lucie. Šachové úlohy v kombinatorice. Pokroky matematiky, fyziky a astronomie, Tome 63 (2018) no. 2, pp. 125-147. http://geodesic.mathdoc.fr/item/PMFA_2018_63_2_a4/
[1] Bezzel, M.: Zwei Schachfragen. Berliner Schachzeitung 3 (1848), 363.
[2] Cockayne, E. J.: Chessboard domination problems. Discrete Math. 86 (1–3) (1990), 13–20. | DOI | MR
[3] Dudeney, H. E.: Amusements in mathematics. Thomas Nelson, London, 1917. | MR
[4] Finozhenok, D., Weakley, W. D.: An improved lower bound for domination numbers of the queen’s graph. Australas. J. Combin. 37 (2007), 295–300. | MR
[5] Gardner, M.: Mathematical magic show. MAA, Washington, DC, 1989.
[6] Gardner, M.: The unexpected hanging and other mathematical diversions. The University of Chicago Press, 1991.
[7] Greenberg, R.: Elementary problems and solutions E1585 II. Amer. Math. Monthly 71 (2) (1964), 210. | MR
[8] Harris, L. H., Perkins, S., Rauch, P. A., Jones, S. K.: Bishop independence. British J. Math. Comput. Sci. 3 (4) (2013), 835–843. | DOI
[9] Chybová, L.: Šachové úlohy v kombinatorice. Diplomová práce, MFF UK, 2017 [online]. Dostupné z: http://kdm.karlin.mff.cuni.cz/diplomky/lucie_chybova_dp/sachove-ulohy.pdf
[10] Jaglom, A. M., Jaglom, I. M.: Challenging mathematical problems with elementary solutions, Vol. 1. Combinatorial analysis and probability theory. Dover Publications, New York, 1964. | MR
[11] Nauck, F.: Briefwechseln mit Allen für Alle. Illustrierte Zeitung 15 (377) (1850), 182.
[12] Pauls, E.: Das Maximalproblem der Damen auf dem Schachbrete I. Deutsche Schachzeitung, Leipzig, Nr. 5 (1874), 129–134.
[13] Pauls, E.: Das Maximalproblem der Damen auf dem Schachbrete II. Deutsche Schachzeitung, Leipzig, Nr. 9 (1874), 257–267.
[14] Raghavan, V., Venkatesan, S. M.: On bounds for a board covering problem. Inform. Process. Lett. 25 (1987), 281–284. | DOI | MR
[15] Seibel, K.: The knight’s tour on the cylinder and torus. Proc. Res. Experiences Undergrad. Program Math., Oregon State University, Summer 1994.
[16] Schwenk, A. J.: Which rectangular chessboards have a knight’s tour?. Math. Mag. 64 (5) (1991), 325–332. | DOI | MR
[17] Watkins, J. J.: Across the board: The mathematics of chessboard problems. Princeton University Press, 2004. | MR