@article{PMFA_2018_63_2_a2,
author = {Berec, Lud\v{e}k},
title = {Kdy\v{z} se matematika potk\'a s biologi{\'\i}: matematick\'a epidemiologie},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {91--107},
year = {2018},
volume = {63},
number = {2},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2018_63_2_a2/}
}
Berec, Luděk. Když se matematika potká s biologií: matematická epidemiologie. Pokroky matematiky, fyziky a astronomie, Tome 63 (2018) no. 2, pp. 91-107. http://geodesic.mathdoc.fr/item/PMFA_2018_63_2_a2/
[1] Alemi, A. A., Bierbaum, M., Myers, C. R., Sethna, J. P.: You can run, you can hide: the epidemiology and statistical mechanics of zombies. Phys. Rev. E 92:052801 (2015).
[2] Anderson, R. M., May, R. M.: The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. Roy. Soc. London Ser. B 291 (1981), 451–524. | DOI
[3] Bacaër, N.: A short history of mathematical population dynamics. Springer, 2011. | MR | Zbl
[4] Berec, L., Janoušková, E., Theuer, M.: Sexually transmitted infections and mate-finding Allee effects. Theoret. Population Biol. 114 (2017), 59–69. | DOI
[5] Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mémoires de mathématique et de physique, presentés à l’Académie royale des sciences, 1766.
[6] Centers for Disease Control and Prevention (CDC): Centers for Disease Control and Prevention (CDC) 2009 H1N1 vaccination recommendations (2009). [online]. Dostupné z: https://www.cdc.gov/h1n1flu/vaccination/acip.htm
[7] Chenga, J.-J., Liub, Y., Shen, B., Yuan, W.-G.: An epidemic model of rumor diffusion in online social networks. Eur. Phys. J. B 86 (2013), 29. | DOI | MR
[8] Coburn, B. J., Wagner, B. G., Blower, S.: Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Medicine 7 (2009), 30. | DOI
[9] Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., Vespignani, A.: Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Medicine 4 (1) (2007), e13. | DOI
[10] d’Alembert, J.: Onzième mémoire. Sur l’application du calcul des probabilités à l’inoculation de la petite vérole. Opuscules mathématiques, tome second. David, Paris, 1761.
[11] Dietz, K., Heesterbeek, J. A. P.: Daniel Bernoulli’s epidemiological model revisited. Math. Biosci. 180 (2002), 1–29. | DOI | MR
[12] Dorigatti, I., Cauchemez, S., Ferguson, N. M.: Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England. Proc. Natl. Acad. Sci. USA 110 (2013), 13422–13427. | DOI
[13] Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M. E., Ardal, S., Wu, J., Sahai, B. M.: Modelling strategies for controlling SARS outbreaks. Proc. Roy. Soc. London B 271 (2004), 2223–2232. | DOI
[14] Halloran, M. E., Ferguson, N. M., Eubank, S., Longini, J. I. M., Cummings, D. A. T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T. C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C. A., Burke, D. S., Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. USA 105 (2008), 4639–4644. | DOI
[15] Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101 (2004), 15124–15129. | DOI
[16] Longini, I. M., Jr., Halloran, M. E., Nizam, A., Yang, Y.: Containing pandemic influenza with antiviral agents. Amer. J. Epidemiol. 159 (2004), 623–633. | DOI
[17] Longini, I. M., Jr., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D. A. T., Halloran, M. E.: Containing pandemic influenza at the source. Science 309 (2005), 1083–1087. | DOI
[18] Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 115 (1927), 700–721. | DOI
[19] Kermack, W. O., McKendrick, A. G.: Contributions to the mathematical theory of epidemics, II. The problem of endemicity. Proc. Roy. Soc. London A 138 (1932), 55–83. | DOI
[20] Kermack, W. O., McKendrick, A. G.: Contributions to the mathematical theory of epidemics, III. Further studies of the problem of endemicity. Proc. Roy. Soc. London A 141 (1933), 94–122. | DOI
[21] Křivan, V.: Když se matematika potká s biologií: matematická ekologie. Pokroky Mat. Fyz. Astronom. 62 (3) (2017), 185–201.
[22] Křivan, V., Lewis, M., Bentz, B. J., Bewick, S., Lenhart, S. M., Liebhold, A.: A dynamical model for bark beetle outbreaks. J. Theoret. Biol. 407 (2016), 25–37. | DOI | MR
[23] Kucharski, A. J., Camacho, A., Flasche, S., Glover, R. E., Edmunds, W. J., Funk, S.: Measuring the impact of Ebola control measures in Sierra Leone. Proc. Natl. Acad. Sci. USA 112 (2015), 14366–14371. | DOI
[24] Mandl, P.: Pravděpodobnostní dynamické modely. Academia, Praha, 1985. | MR
[25] Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley, A. J., Leung, G. M., Ho, L.-M., Lam, T.-H., Thach, T. Q., Chau, P., Chan, K.-P., Lo, S.-V., Leung, P.-Y., Tsang, T., Ho, W., Lee, K.-H., Lau, E. M. C., Ferguson, N. M., Anderson, R. M.: Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300 (2003), 1961–1966. | DOI
[26] World Health Organization, : Pandemic influenza preparedness and response. (2009) [online]. Dostupné z: http://www.who.int/influenza/resources/documents/pandemic_guidance_04_2009/en/
[27] Wu, J. T., Cowling, B. J.: The use of mathematical models to inform influenza pandemic preparedness and response. Exp. Biol. Medicine 236 (2011), 955–961. | DOI
[28] Wu, J. T., Leung, G. M., Lipsitch, M., Cooper, B. S., Riley, S.: Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Medicine 6 (5) (2009), e1000085. | DOI
[29] Xia, Z.-Q., Wang, S.-F., Li, S.-L., Huang, L.-Y., Zhang, W.-Y., Sun, G.-Q., Gai, Z.-T., Jin, Z.: Modeling the transmission dynamics of Ebola virus disease in Liberia. Sci. Rep. 5 (2015), 13867.