Abelova cena v roce 2017 udělena za teorii waveletů
Pokroky matematiky, fyziky a astronomie, Tome 62 (2017) no. 3, pp. 161-170 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Abelovu cenu za matematiku získal v roce 2017 francouzský matematik Yves Meyer za rozvoj teorie waveletů. V článku se seznámíme s jeho vědeckým životopisem, hlavní myšlenkou teorie waveletů a jejich použitím v praxi.
Abelovu cenu za matematiku získal v roce 2017 francouzský matematik Yves Meyer za rozvoj teorie waveletů. V článku se seznámíme s jeho vědeckým životopisem, hlavní myšlenkou teorie waveletů a jejich použitím v praxi.
Classification : 00A15, 42C40
@article{PMFA_2017_62_3_a0,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Abelova cena v roce 2017 ud\v{e}lena za teorii wavelet\r{u}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {161--170},
     year = {2017},
     volume = {62},
     number = {3},
     zbl = {06813576},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2017_62_3_a0/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - Abelova cena v roce 2017 udělena za teorii waveletů
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2017
SP  - 161
EP  - 170
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PMFA_2017_62_3_a0/
LA  - cs
ID  - PMFA_2017_62_3_a0
ER  - 
%0 Journal Article
%A Křížek, Michal
%T Abelova cena v roce 2017 udělena za teorii waveletů
%J Pokroky matematiky, fyziky a astronomie
%D 2017
%P 161-170
%V 62
%N 3
%U http://geodesic.mathdoc.fr/item/PMFA_2017_62_3_a0/
%G cs
%F PMFA_2017_62_3_a0
Křížek, Michal. Abelova cena v roce 2017 udělena za teorii waveletů. Pokroky matematiky, fyziky a astronomie, Tome 62 (2017) no. 3, pp. 161-170. http://geodesic.mathdoc.fr/item/PMFA_2017_62_3_a0/

[1] Abbott, B. P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116 (2016), paper No. 061102, 1–16. | MR

[2] Brislawn, C. M.: Fingerprints go digital. Notices Amer. Math. Soc. 42 (1995), 1278–1283.

[3] Daubechies, I.: Ten lectures on wavelets. SIAM, CBMS Lecture Notes 61 (1992). | MR | Zbl

[4] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986), 1271–1283. | MR | Zbl

[5] Frazier, M. W.: An introduction to wavelets through linear algebra. Springer, New York, 1999. | MR | Zbl

[6] Graps, A.: An introduction to wavelets. IEEE, 1995.

[7] Klimenko, S., et al.: Method for detection and reconstruction of gravitational wave transient with networks of advanced detectors. Phys. Rev. D 93 (2016), paper No. 042004. | DOI

[8] Koukal, S., Křížek, M., Potůček, R.: Fourierovy trigonometrické řady a metoda konečných prvků v komplexním oboru. Academia, Praha, 2002.

[9] Křížek, M., Somer, L., Šolcová, A.: Kouzlo čísel: Od velkých objevů k aplikacím. Edice Galileo, sv. 39. Academia, Praha, 2011.

[10] Meyer, Y.: Nombres de Pisot, nombres de Salem et analyse harmonique. Lecture Notes in Math. 117, Springer-Verlag, 1970. | MR | Zbl

[11] Meyer, Y.: Algebraic numbers and harmonic analysis. North-Holland, Amsterdam, 1972. | MR | Zbl

[12] Meyer, Y.: Wavelets, quadrature mirror filters and numerical image processing. Les ondelettes en 1989 (Orsay, 1989), Lecture Notes in Math. 1438, Springer, Berlin, 1990, 14–25, 196–197. | DOI | MR

[13] Meyer, Y.: Wavelets and operators. Cambridge Stud. Adv. Math. 37, Cambridge Univ. Press, Cambridge, 1992. | MR | Zbl

[14] Meyer, Y.: Wavelets. Algorithms & applications. SIAM, Philadelphia, 1993. | MR

[15] Meyer, Y.: Quasicrystals, Diophantine approximation and algebraic numbers. Beyond Quasicrystals. Axel, F., Gratias, D. (eds.), Les Editions de Physique, Springer, 1995, 3–16. | MR

[16] Meyer, Y., Coifman, R.: Wavelets. Calderón–Zygmund and multilinear operators. Cambridge Stud. Adv. Math. 48, Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl

[17] Najzar, K.: Základy teorie waveletů. Karolinum, Praha, 2004.

[18] Najzar, K., Holman, P.: Wavelets. Pokroky Mat. Fyz. Astronom. 44 (1999), 294–303. | Zbl

[19] Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. | MR

[20] Szabó, B., Babuška, I.: Finite element analysis. John Wiley, New York, 1991. | MR | Zbl

[21] Vand, V.: Magnifying 100 million times. The Meccano Magazine 36 (1951), 247.

[22] Walnut, F. W.: An introduction to wavelet theory. Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2002. | MR

[23] Wojtaszczyk, P.: Mathematical introduction to wavelets. Cambridge Univ. Press, Cambridge, 1997. | MR | Zbl

[24] The Abel Prize: The Abel Prize. http://www.abelprize.no