Mots-clés : stiff differential system; $A$-stability; selfstarting block method; initial value problem
@article{PMFA_2006_51_1_a7,
author = {Vit\'asek, Emil},
title = {$A$-stabiln{\'\i} metody libovoln\v{e} vysok\'eho \v{r}\'adu},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {61--68},
year = {2006},
volume = {51},
number = {1},
zbl = {1265.65143},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2006_51_1_a7/}
}
Vitásek, Emil. $A$-stabilní metody libovolně vysokého řádu. Pokroky matematiky, fyziky a astronomie, Tome 51 (2006) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/PMFA_2006_51_1_a7/
[1] Baker, G. A. Jr., Graves-Morris, P.: Padé Approximations. Cambridge University Press, New York 1996. | MR
[2] Butcher, J. C.: The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. John Wiley & Sons, Chichester 1987. | MR | Zbl
[3] Butcher, J. C., Jackiewicz, Z.: Construction of high order diagonally implicit multistage integration methods for ordinary differential equations. Applied Numerical Mathematics 21 (1996), 385–415. | DOI | MR
[4] Dahlquist, G.: A special stability problem for linear multistep methods. BIT 3 (1953), 27–43. | DOI | MR
[5] Golub, H. G., Loan, Ch. F. van: Matrix Computations. John Hopkins University Press, Baltimore 1989. | MR
[6] Lambert, J. D.: Numerical methods for ordinary differential systems. John Wiley & Sons, London 1991. | MR | Zbl
[7] Práger, M., Taufer, J., Vitásek, E.: Overimplicit multistep methods. Apl. Mat. 18 (1973), 399–421. | MR