O triangulacích bez tupých úhlů
Pokroky matematiky, fyziky a astronomie, Tome 50 (2005) no. 3, pp. 193-207 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65D18, 65N55
Mots-clés : triangulation; simplexes with orthogonal corners; non-obtuse triangles
@article{PMFA_2005_50_3_a2,
     author = {Brandts, Jan and Korotov, Sergej and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {O~triangulac{\'\i}ch bez tup\'ych \'uhl\r{u}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {193--207},
     year = {2005},
     volume = {50},
     number = {3},
     zbl = {1265.65033},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2005_50_3_a2/}
}
TY  - JOUR
AU  - Brandts, Jan
AU  - Korotov, Sergej
AU  - Křížek, Michal
TI  - O triangulacích bez tupých úhlů
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2005
SP  - 193
EP  - 207
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PMFA_2005_50_3_a2/
LA  - cs
ID  - PMFA_2005_50_3_a2
ER  - 
%0 Journal Article
%A Brandts, Jan
%A Korotov, Sergej
%A Křížek, Michal
%T O triangulacích bez tupých úhlů
%J Pokroky matematiky, fyziky a astronomie
%D 2005
%P 193-207
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/PMFA_2005_50_3_a2/
%G cs
%F PMFA_2005_50_3_a2
Brandts, Jan; Korotov, Sergej; Křížek, Michal. O triangulacích bez tupých úhlů. Pokroky matematiky, fyziky a astronomie, Tome 50 (2005) no. 3, pp. 193-207. http://geodesic.mathdoc.fr/item/PMFA_2005_50_3_a2/

[1] Aristote: Du ciel. Text établi et traduit par Paul Moraux, Les Belles Lettres, Paris 1965.

[2] Axelsson, O., Blaheta, R.: Two simple derivations of universal bounds for the C. B. S. inequality constant. Appl. Math. 49 (2004), 57–72. | DOI | MR

[3] Bern, M., Chew, P., Eppstein, D., Ruppert, J.: Dihedral bounds for mesh generation in high dimensions. Proc. 6th AMC-SIAM Sympos. on Discrete Algorithms 1995, 189–196. | MR | Zbl

[4] Blaheta, R.: Nested tetrahedral grids and strengthened CBS inequality. Numer. Linear Alg. Appl. 10 (2003), 619–637. | DOI | MR

[5] Bliss, A., Su, F. E.: Lower bounds for simplicial covers and triangulations of cubes. Discrete Comput. Geom. 33 (2005), 669–686. | DOI | MR | Zbl

[6] Brandts, J., Korotov, S., Křížek, M.: On the right triangle and its higher dimensional generalizations. Nieuwe Wiskrant 24e (2004), No. 2, 12–16.

[7] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505. | DOI | MR | Zbl

[8] Cassidy, C., Lord, G.: A square acutely triangulated. J. Recreational Math. 13 (1980), 263–268. | MR

[9] Coxeter, H. S. M.: Trisecting an orthoscheme. Computers Math. Applic. 17 (1989), 59–71. | DOI | MR | Zbl

[10] Delaunay, B.: Sur la sphère vide. Izd. Akad. Nauk SSSR, Otdel. Mat. Estestv. Nauk 7 (1934), 793–800. | Zbl

[11] Eppstein, D., Sullivan, J. M., Üngör, A.: Tiling space and slabs with acute tetrahedra. Comput. Geom. 27 (2004), 237–255. | DOI | MR | Zbl

[12] Frank, F. C., Kasper, J. S.: Complex alloy structures regarded as sphere packings, Parts I and II. Acta Crystall. 11 (1958), 184–190; 12 (1959), 483–499.

[13] Fiedler, M.: Geometrie simplexu v $E_n$. Časopis Pěst. Mat. XII (1954), 297–320.

[14] Fiedler, M.: Aggregation in graphs. Coll. Math. Soc. J. Bolyai 18 (1976), 315–330. | MR

[15] Fiedler, M.: Matice a grafy v euklidovské geometrii. DIMATIA MFF UK, Praha 2001.

[16] Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. Sci. Engrg. 43 (1942), 580–582. | DOI | MR | Zbl

[17] Gardner, M.: Mathematical games. Scient. Amer. 202 (1960), 172–186. | DOI

[18] Gerver, J. L.: The dissection of a polygon into nearly equilateral triangles. Geom. Dedicata 16 (1984), 93–106. | DOI | MR | Zbl

[19] Goldberg, M.: Three infinite families of tetrahedral space-fillers. J. Comb. Theory (A) 16 (1974), 348–354. | DOI | MR | Zbl

[20] Hadwiger, H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Die Grundlehren der Math. Wissenschaften 93. Springer-Verlag, Berlin 1957. | MR | Zbl

[21] Haiman, M.: A simple and relatively efficient triangulation of the $N$-cube. Discrete Comput. Geom. 6 (1991), 287–289. | DOI | MR | Zbl

[22] Hughes, R. B., Anderson, M. R.: Simplexity of the cube. Discrete Math. 158 (1996), 99–150. | DOI | MR | Zbl

[23] Charsischwili, A. B.: Orthogonale Simplexe im vierdimensionalen Raum. Mitt. Akad. Wiss. der Georgischen SSR 88 (1982), 33–36.

[24] Kaiser, H.: Zum Problem der Zerlegbarkeit von Simplexen in Orthoscheme. Studia Sci. Math. Hungarica 21 (1986), 227–242. | MR | Zbl

[25] Katrnoška, F.: Genetické algebry. PMFA 50 (2005), 62–74.

[26] Korotov, S., Křížek, M.: Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001), 724–733. | DOI | MR | Zbl

[27] Korotov, S., Křížek, M.: Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50 (2005), 1105–1113. | DOI | MR | Zbl

[28] Korotov, S., Křížek, M., Neittaanmäki, P.: Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70 (2001), 107–119. | DOI | MR | Zbl

[29] Křížek, M.: Superconvergence phenomena on three-dimensional meshes. Internat. J. Numer. Anal. Model. 2 (2005), 43–56. | MR | Zbl

[30] Křížek, M.: There is no face-to-face partition of $R^5$ into acute simplices. Submitted in 2005, 1–9.

[31] Křížek, M., Šolc, J.: Acute versus nonobtuse tetrahedralizations. In: Conjugate Gradient Algorithms and Finite Element Methods, Springer-Verlag, Berlin 2004, 161–170. | MR | Zbl

[32] Kuhn, H. W.: Some combinatorial lemmas in topology. IBM J. Res. Develop. 45 (1960), 518–524. | DOI | MR | Zbl

[33] Lenhard, H. C.: Zerlegung von Tetraedern in Orthogonaltetraeder. Elem. Math. 15 (1960), 106–107. | MR

[34] Lindgren, H.: Geometric dissections. Van Nostrand, Princeton, New Jersey 1964.

[35] Lyusternik, L. A.: Convex figures and polyhedra. Dover Publications, Inc., New York 1963; Moscow 1956. | MR | Zbl

[36] Manheimer, W., Federico, J. P. et al.: Dissecting an obtuse triangle into acute triangles. Amer. Math. Monthly 67 (1960), 923.

[37] Møller, J.: Lectures on random Voronoi tessellations. Springer, New York 1994. | MR

[38] Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations. Concepts and applications of Voronoi diagrams. John Wiley & Sons, New York 1992. | MR | Zbl

[39] Penrose, R.: Pentaplexity: a class of nonperiodic tilings of the plane. Math. Intelligencer 2 (1979/80), 32–37. | DOI | MR

[40] Rajan, V. T.: Optimality of the Delaunay triangulation in $R^d$. Discrete Comput. Geom. 12 (1994), 189–202. | DOI | MR

[41] Schläfli, L.: Theorie der vielfachen Kontinuität (aus dem Jahre 1852). Aufträge der Denkschriften-Kommission der Schweizer naturforschender Gesellschaft, Zurcher & Furre 1901. In: Gesammelte mathematische Abhandlungen, Birkhäuser, Basel 1950.

[42] Stillwell, J.: Stodvacetistěn v $R^4$. PMFA 46 (2001), 265–280.

[43] Struik, D. J.: Het probleem “De impletione loci”. Nieuf Archief voor Wiskunde, 2nd series, 15 (1925), 121–134.

[44] Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic geometry and its applications. John Wiley & Sons, New York 1985, 1995. | MR

[45] Tschirpke, K.: On the dissection of simplices into orthoschemes. Geom. Dedicata 46 (1993), 313–329. | DOI | MR | Zbl

[46] Tschirpke, K.: Orthoschemzerlegungen fünfdimensionaler Simplexe in Räumen konstanter Krümmung. Dissertation, Univ. Jena 1993. | MR

[47] Tschirpke, K.: The dissection of five-dimensional simplices into orthoschemes. Beiträge zur Algebra und Geometrie 35 (1994), 1–11. | MR | Zbl

[48] Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Recherches sur les parallélloedres primitifs. J. Reine Angew. Math. 134 (1908), 198–287.

[49] Zhu, Q., Lin, Q., Liu, L.: Monte Carlo finite element method. Sborník semináře Programy a algoritmy numerické matematiky, MÚ AV ČR, Praha 1996, 210–217.

[50] Zlámal, M.: Finite element solution of the fundamental equations of semiconductor devices, Parts I and II. Math. Comp. 49 (1986), 27–43; Appl. Math. 46 (2001), 251–294. | DOI

[51] www.ics.uci.edu/~eppstein/junkyard/all.html