Třicet let od objevu superkonvergence metody konečných prvků
Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 4, pp. 288-293 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 65-xx
@article{PMFA_2003_48_4_a2,
     author = {Brandts, Jan and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {T\v{r}icet let od objevu superkonvergence metody kone\v{c}n\'ych prvk\r{u}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {288--293},
     year = {2003},
     volume = {48},
     number = {4},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a2/}
}
TY  - JOUR
AU  - Brandts, Jan
AU  - Křížek, Michal
TI  - Třicet let od objevu superkonvergence metody konečných prvků
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2003
SP  - 288
EP  - 293
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a2/
LA  - cs
ID  - PMFA_2003_48_4_a2
ER  - 
%0 Journal Article
%A Brandts, Jan
%A Křížek, Michal
%T Třicet let od objevu superkonvergence metody konečných prvků
%J Pokroky matematiky, fyziky a astronomie
%D 2003
%P 288-293
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a2/
%G cs
%F PMFA_2003_48_4_a2
Brandts, Jan; Křížek, Michal. Třicet let od objevu superkonvergence metody konečných prvků. Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 4, pp. 288-293. http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a2/

[1] Babuška, I., Práger, M., Vitásek, E.: Numerical processes in differential equations. John Wiley & Sons, New York 1966. | MR

[2] Bakker, M.: A note on $C^0$ Galerkin methods for two-point boundary problem. Numer. Math. 38 (1981/82), 447–453. | MR

[3] Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer. Math. 49 (1986), 11–38. | MR | Zbl

[4] Brandts, J., Křížek, M.: History and future of superconvergence in three-dimensional finite element methods. Proc. Conf. Finite Element Methods: Three-dimensional Problems, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakkōtosho, Tokyo 2001, 22–33. | MR

[5] Douglas, J., Dupont, T.: Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems. Topics in Numer. Anal. II, Acad. Press 1973, 89–113. | MR

[6] Chen, C. M., Huang, Y. Q.: High accuracy theory of finite element methods. Hunan Science and Technology Press, Changsha 1995.

[7] Hlaváček, I., Chleboun, J.: A recovered gradient method applied to smooth optimal shape problems. Appl. Math. 41 (1996), 281–297. | MR

[8] Křížek, M.: Padesát let metody konečných prvků. PMFA 37 (1992), 129–140.

[9] Křížek, M., Neittaanmäki, P.: On superconvergence techniques. Acta Appl. Math. 9 (1987), 175–198. | MR

[10] Křížek, M., Neittaanmäki, P., Stenberg, R.: Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates. LN in Pure and Appl. Math., vol. 196, Marcel Dekker, New York 1998. | MR

[11] Lesaint, P., Zlámal, M.: Superconvergence of the gradient of finite element solutions. RAIRO Anal. Numér. 13 (1979), 139–166. | MR

[12] Oganesjan, L. A., Ruchovec, L. A.: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary. Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. | MR

[13] Taylor, A. E.: Úvod do funkcionální analýzy. Academia, Praha 1973.

[14] Wahlbin, L.: Superconvergence in Galerkin finite element methods. LN in Math., vol. 1605, Springer, Berlin 1995. | MR

[15] Zlámal, M.: On the finite element method. Numer. Math. 12 (1968), 394–409.

[16] Zlámal, M.: Superconvergence and reduced integration in the finite element method. Math. Comp. 32 (1978), 663–685. | MR