@article{PMFA_2003_48_4_a0,
author = {Kawohl, Bernd},
title = {Symetrie: {Ano} \v{c}i ne?},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {265--276},
year = {2003},
volume = {48},
number = {4},
zbl = {1247.00043},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a0/}
}
Kawohl, Bernd. Symetrie: Ano či ne?. Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 4, pp. 265-276. http://geodesic.mathdoc.fr/item/PMFA_2003_48_4_a0/
[1] Alikakos, N. D., Bates, P. W.: On the singular limit in a phase field model of phase transitions. Analyse nonlinéaire, Ann. Inst. Henri Poincaré 5 (1988), 141–178. | MR | Zbl
[2] Barles, G., Diaz, G., Diaz, J. I.: Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a nonlipschitz nonlinearity. Comm PDE 17 (1992), 1037–1050. | DOI | MR
[3] Brèzis, H., Nirenberg, L.: Positive solutions of nonlinear equations involving critical Sobolev components. Commun. Pure Appl. Math. 36 (1983), 437–477. | DOI | MR
[4] Brock, F.: Continuous polarization and symmetry of solutions of variational problems with potentials. In: Calculus of Variations, Applications and Computations, Pont-à-Mousson 1994. Pitman Res. Notes in Math. 326 (1995), 25–35. | MR | Zbl
[5] Brock, F.: Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian. Acad. Sci. Math. Sci. 110 (2000), 157–204. | DOI | MR | Zbl
[6] Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calculus of Variations and PDE 4 (1996), 593–599. | DOI | MR | Zbl
[7] Brock, F., Solynin, A.: An approach to symmetrization via polarization. Trans. Amer. Math. Soc. 352 (2000), 1759–1796. | DOI | MR | Zbl
[8] Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Mathematische Nachrichten 173 (1995), 71–89. | DOI | MR | Zbl
[9] Caffarelli, L., Garofalo, N., Segala, F.: A gradient bound for entire solutions of quasilinear equations and its consequences. Commun. Pure Appl. Math. 47 (1994), 1457–1473. | DOI | MR
[10] Coffmann, C. V.: A nonlinear boundary value problem with many positive solutions. J. Differ. Equations 54 (1984), 429–437. | DOI
[11] Esteban, M.: Nonsymmetric ground states of symmetric variational problems. Commun. Pure Appl. Math. 44 (1991), 259–274. | DOI | MR | Zbl
[12] Gidas, B., Ni, W. M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243. | DOI | MR | Zbl
[13] Gerdes, K., Schwab, C.: Hierarchic models of Helmholtz problems on thin domains. Math. Models & Methods Appl. Sci., to appear. | MR | Zbl
[14] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Mathematics 1150 (1985). | MR | Zbl
[15] Kawohl, B., Sweers, G.: Remarks on eigenvalues and eigenfunctions of a special elliptic systems. J. Appl. Math. Phys. (ZAMP) 38 (1987), 730–740. | DOI | MR
[16] Kawohl, B.: A conjectured heat flow problem, Solution. SIAM Review 37 (1995), 105–106.
[17] Kawohl, B.: Instability criteria for solutions of second order elliptic quasilinear differential equations. In: Partial differential equations and applications. Eds. P. Marcellini, G. Talenti, E. Vesentini. Marcel Dekker, Lecture Notes in Pure and Applied Math. 177 (1996), 201–207. | MR | Zbl
[18] Kawohl, B.: A short note on hot spots. Zeitschr. Angew. Math. Mech, Suppl. 2, 76 (1996), 569–570. | Zbl
[19] Kawohl, B.: The opaque square and the opaque circle. In: General Inequalities VII, Int. Ser. Numer. Math. 123 (1997), 339–346. | MR | Zbl
[20] Klamkin, M. S.: A conjectured heat flow problem, Problem. SIAM Review 36 (1994), 107. | DOI
[21] Littlewood, J. E.: A Mathematician’s Miscellany. Methuen & Co. Ltd., London 1953. | Zbl
[22] Lopez, O.: Radial and nonradial minimizers for some radially symmetric functionals. Electronic Journal of Differential equations 1996 (3), 1–14. http://ejde.math.swt.edu
[23] Rademacher, H., Toeplitz, O.: Von Zahlen und Figuren. Springer, Berlin 1930. Anglický překlad: The enjoyment of mathematics, Princeton, Univ. Press, Princeton 1994.
[24] Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971), 304–318. | DOI | MR | Zbl
[25] Weinberger, H.: Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43 (1971), 319–320. | DOI | MR | Zbl
[26] Renardy, M., Rogers, R. C.: An Introduction to Partial Differential Equations. Springer-Verlag 1992. | MR