Operády v současné matematice
Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 3, pp. 239-250 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 18D50, 55P48, 55R80
@article{PMFA_2003_48_3_a4,
     author = {Markl, Martin},
     title = {Oper\'ady v~sou\v{c}asn\'e matematice},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {239--250},
     year = {2003},
     volume = {48},
     number = {3},
     zbl = {1247.18006},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/}
}
TY  - JOUR
AU  - Markl, Martin
TI  - Operády v současné matematice
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2003
SP  - 239
EP  - 250
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/
LA  - cs
ID  - PMFA_2003_48_3_a4
ER  - 
%0 Journal Article
%A Markl, Martin
%T Operády v současné matematice
%J Pokroky matematiky, fyziky a astronomie
%D 2003
%P 239-250
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/
%G cs
%F PMFA_2003_48_3_a4
Markl, Martin. Operády v současné matematice. Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 3, pp. 239-250. http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/

[1] Boardman, J. M., Vogt, R. M.: Homotopy Invariant Algebraic Structures on Topological Spaces. Springer-Verlag 1973. | MR | Zbl

[2] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the RiemannĦilbert problem I: The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210 (1) (2000), 249–273. | DOI | MR

[3] Fox, T. F., Markl, M.: Distributive laws, bialgebras, and cohomology. In: Operads: Proceedings of Renaissance Conferences, J. L. Loday, J. D Stasheff, A. A. Voronov, eds, Contemporary Math., svazek 202, str. 167–205, Amer. Math. Soc. 1997. | MR | Zbl

[4] Getzler, E., Jones, J. D. S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March 1994.

[5] Ginzburg, V., Kapranov, M. M.: Koszul duality for operads. Duke Math. J. 76 (1) (1994), 203–272. | DOI | MR | Zbl

[6] Huang, Y.-Z.: Two-dimensional conformal geometry and vertex operator algebras. Birkhäuser Boston Inc., Boston, MA 1997. | MR | Zbl

[7] Kontsevich, M, Soibelman, Y.: Deformations of algebras over operads and Deligne’s conjecture. Preprint math.QA/0001151, leden 2000. | MR

[8] Loday, J.-L.: La renaissance des opérades. Séminarie Bourbaki 792, 47ème année 1994–95, 47–74.

[9] MacLane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49 (1) (1963), 28–46. | MR | Zbl

[10] Manin, Y. I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. American Mathematical Society Colloquium Publications, svazek 47. American Mathematical Society, Providence, RI 1999. | MR | Zbl

[11] Markl, M.: Homotopy algebras are homotopy algebras. Preprint math.AT/9907138, červenec 1999. | MR

[12] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, svazek 96. American Mathematical Society, Providence, Rhode Island 2002. | MR | Zbl

[13] May, J. P.: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics 271, Springer-Verlag, New York 1972. | MR | Zbl

[14] Vogt, R. M.: Cofibrant operads and universal $E_\infty $ operads. Preprint E99-005, 81–89, viz http://www.mathematik.uni-bielefeld.de/sfb343/preprints/index99.html | MR | Zbl