@article{PMFA_2003_48_3_a4,
author = {Markl, Martin},
title = {Oper\'ady v~sou\v{c}asn\'e matematice},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {239--250},
year = {2003},
volume = {48},
number = {3},
zbl = {1247.18006},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/}
}
Markl, Martin. Operády v současné matematice. Pokroky matematiky, fyziky a astronomie, Tome 48 (2003) no. 3, pp. 239-250. http://geodesic.mathdoc.fr/item/PMFA_2003_48_3_a4/
[1] Boardman, J. M., Vogt, R. M.: Homotopy Invariant Algebraic Structures on Topological Spaces. Springer-Verlag 1973. | MR | Zbl
[2] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the RiemannĦilbert problem I: The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210 (1) (2000), 249–273. | DOI | MR
[3] Fox, T. F., Markl, M.: Distributive laws, bialgebras, and cohomology. In: Operads: Proceedings of Renaissance Conferences, J. L. Loday, J. D Stasheff, A. A. Voronov, eds, Contemporary Math., svazek 202, str. 167–205, Amer. Math. Soc. 1997. | MR | Zbl
[4] Getzler, E., Jones, J. D. S.: Operads, homotopy algebra, and iterated integrals for double loop spaces. Preprint hep-th/9403055, March 1994.
[5] Ginzburg, V., Kapranov, M. M.: Koszul duality for operads. Duke Math. J. 76 (1) (1994), 203–272. | DOI | MR | Zbl
[6] Huang, Y.-Z.: Two-dimensional conformal geometry and vertex operator algebras. Birkhäuser Boston Inc., Boston, MA 1997. | MR | Zbl
[7] Kontsevich, M, Soibelman, Y.: Deformations of algebras over operads and Deligne’s conjecture. Preprint math.QA/0001151, leden 2000. | MR
[8] Loday, J.-L.: La renaissance des opérades. Séminarie Bourbaki 792, 47ème année 1994–95, 47–74.
[9] MacLane, S.: Natural associativity and commutativity. Rice Univ. Stud. 49 (1) (1963), 28–46. | MR | Zbl
[10] Manin, Y. I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. American Mathematical Society Colloquium Publications, svazek 47. American Mathematical Society, Providence, RI 1999. | MR | Zbl
[11] Markl, M.: Homotopy algebras are homotopy algebras. Preprint math.AT/9907138, červenec 1999. | MR
[12] Markl, M., Shnider, S., Stasheff, J. D.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, svazek 96. American Mathematical Society, Providence, Rhode Island 2002. | MR | Zbl
[13] May, J. P.: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics 271, Springer-Verlag, New York 1972. | MR | Zbl
[14] Vogt, R. M.: Cofibrant operads and universal $E_\infty $ operads. Preprint E99-005, 81–89, viz http://www.mathematik.uni-bielefeld.de/sfb343/preprints/index99.html | MR | Zbl