Hyperbolické systémy, entropie a metoda konečných objemů
Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 4, pp. 287-297 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35L65, 65M60
@article{PMFA_2002_47_4_a2,
     author = {Rokyta, Mirko},
     title = {Hyperbolick\'e syst\'emy, entropie a~metoda kone\v{c}n\'ych objem\r{u}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {287--297},
     year = {2002},
     volume = {47},
     number = {4},
     zbl = {1046.35073},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a2/}
}
TY  - JOUR
AU  - Rokyta, Mirko
TI  - Hyperbolické systémy, entropie a metoda konečných objemů
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2002
SP  - 287
EP  - 297
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a2/
LA  - cs
ID  - PMFA_2002_47_4_a2
ER  - 
%0 Journal Article
%A Rokyta, Mirko
%T Hyperbolické systémy, entropie a metoda konečných objemů
%J Pokroky matematiky, fyziky a astronomie
%D 2002
%P 287-297
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a2/
%G cs
%F PMFA_2002_47_4_a2
Rokyta, Mirko. Hyperbolické systémy, entropie a metoda konečných objemů. Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 4, pp. 287-297. http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a2/

[1] Bressan, A.: Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press 1998. | MR

[2] Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715. | MR | Zbl

[3] Godlewski, E., Raviart, P. A.: Hyperbolic Systems of Conservation Laws. Mathematiques & Applications, S. M. A. I., Ellipses, Paris 1991 (in English). | MR | Zbl

[4] Kröner, D.: Numerical Schemes for Conservation Laws. Teubner, Leipzig–Stuttgart 1996.

[5] Kröner, D., Rokyta, M.: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31, no. 2 (1994), 324–343. | MR

[6] Kružkov, S. N.: First order quasilinear equations in several independent variables. Math. USSR Sbornik 10, no. 2 (1970), 217–243 (in English).

[7] Lax, P. D.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957), 537–566. | MR | Zbl

[8] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary partial differential equations. Chapman & Hall 1996.

[9] Rauch, J.: BV estimates fail for most quasilinear hyperbolic systems in dimension greater than one. Comm. Math. Phys. 106 (1986), 481–484. | MR

[10] Rokyta, M.: A suitable replacement of the BV condition for finite volume schemes on unstructured grids. In: Numerical Modelling in Continuum Mechanics, Feistauer, M., Rannacher, R., Kozel, K. (eds.), 267–274, Matfyzpress, Praha 2001.

[11] Serre, D.: Systemes de lois de conservation. Diderot Editeur, 1996. | Zbl

[12] Sever, M.: Uniqueness failure for entropy solutions of hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 42 (1989), 173–183. | MR | Zbl

[13] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Grundlehren der math. Wissenschaften, Bd. 258, Springer-Verlag, Berlin–Heidelberg–New York, 1983 (1st ed.), 1994 (2nd ed.). | MR | Zbl