Choquetova teorie kapacit
Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 4, pp. 265-279 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 01Axx, 28A12, 31B15
@article{PMFA_2002_47_4_a0,
     author = {Luke\v{s}, Jaroslav and Netuka, Ivan and Vesel\'y, Ji\v{r}{\'\i}},
     title = {Choquetova teorie kapacit},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {265--279},
     year = {2002},
     volume = {47},
     number = {4},
     zbl = {1049.31006},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a0/}
}
TY  - JOUR
AU  - Lukeš, Jaroslav
AU  - Netuka, Ivan
AU  - Veselý, Jiří
TI  - Choquetova teorie kapacit
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2002
SP  - 265
EP  - 279
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a0/
LA  - cs
ID  - PMFA_2002_47_4_a0
ER  - 
%0 Journal Article
%A Lukeš, Jaroslav
%A Netuka, Ivan
%A Veselý, Jiří
%T Choquetova teorie kapacit
%J Pokroky matematiky, fyziky a astronomie
%D 2002
%P 265-279
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a0/
%G cs
%F PMFA_2002_47_4_a0
Lukeš, Jaroslav; Netuka, Ivan; Veselý, Jiří. Choquetova teorie kapacit. Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 4, pp. 265-279. http://geodesic.mathdoc.fr/item/PMFA_2002_47_4_a0/

[1] Adams, D. R.: Choquet integrals in potential theory. Publ. Mat. (1) 42 (1998), 3–66. | MR | Zbl

[2] Adams, D. R., Hedberg, L. I.: Function spaces and potential theory. SpringerV̄erlag, Berlin 1999. | MR

[3] Aikawa, H., Essén, M.: Potential Theory — selected topics. Lecture Notes in Math. 1633, SpringerV̄erlag, Berlin 1996. | MR

[4] Anger, B.: Approximation of capacities by measures. In: Lecture Notes in Math. 226, Springer-Verlag, Berlin 1971, 152–170. | MR

[5] Anger, B.: Representation of capacities. Math. Ann. 229 (1977), 245–258. | MR | Zbl

[6] Armitage, D. H., Gardiner, S. J.: Classical potential theory. Springer-Verlag, London 2001. | MR | Zbl

[7] Arsove, M. G.: The Wiener-Dirichlet problem and the theorem of Evans. Math. Z. 103 (1968), 184–194. | MR | Zbl

[8] Bliedtner, J., Hansen, W.: Potential theory — An analytic and probabilistic approach to balayage. Springer-Verlag, Berlin 1986. | MR | Zbl

[9] Carleson, L.: Lectures on exceptional sets. Van Nostrand, Princeton 1967. | MR

[10] Dellacherie, C.: Capacités, rabotages et ensembles analytiques. Séminaire Choquet, G., Rogalski, M., Saint-Raymond, J., 19e année, Initiation à l’Analyse, Publ. Math. Univ. Pierre et Marie Curie 41, Univ. Paris VI, Paris 1980. | MR | Zbl

[11] Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel. Chapitres I à IV, Hermann, Paris 1975. | MR | Zbl

[12] Denneberg, D.: Non-additive measure and integral. Kluwer Academic Publishers Group, Dordrecht 1994. | MR | Zbl

[13] Doob, J. L.: Classical potential theory and its probabilistic counterpart. SpringerV̄erlag, New York 1984. | MR | Zbl

[14] Fan, S. C.: Integration with respect to an upper measure function. Amer. J. Math. 63 (1941), 319–338. | MR | Zbl

[15] Fuglede, B.: Capacity as a sublinear functional generalizing an integral. Danske Vid. Selsk. Mat.-Fys. Medd. (7) 38 (1971). | MR | Zbl

[16] Helms, L. L.: Introduction to potential theory. Wiley-Interscience, New York – London –– Sydney 1969. | MR | Zbl

[17] Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295. | MR

[18] Choquet, G.: Lectures on analysis I–III. W. A. Benjamin, Inc., New York–Amsterdam 1969.

[19] Choquet, G.: Vznik teorie kapacit: zamyšlení nad vlastní zkušeností. Pokroky Mat. Fyz. Astronom. 34 (1989), 71–83.

[20] König, H.: Measure and integration. An advanced course in basic procedures and applications. Springer-Verlag, Berlin 1997. | MR

[21] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu II., III., IV. SPN, Praha 1972, 1976, 1977.

[22] Kuratowski, K.: Topology I. Academic Press, New York 1966. | MR

[23] Lorentz, G. G.: Who discovered analytic sets?. Math. Inteligencer (4) 23 (2001), 28–32. | MR

[24] Lukeš, J.: Lebesgueův integrál. Časopis Pěst. Mat. (4) 91 (1966), 371–383.

[25] Lukeš, J., Malý, J.: Measure and integral. Matfyzpress, Praha 1995.

[26] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory. Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986.

[27] Meyer, P.-A.: Probabilités et potentiel. Hermann, Paris 1966. | MR | Zbl

[28] Port, S. C., Stone, C. J.: Brownian motion and classical potential theory. Academic Press, New York 1978. | MR | Zbl

[29] Rao, M. M.: Measure theory and integration. Wiley-Interscience, New York 1987. | MR | Zbl

[30] Sedlák, B., Štoll, I.: Elektřina a magnetismus. Academia, Praha 2002.

[31] Wermer, J.: Potential theory. Lecture Notes in Math. 408, Springer-Verlag, Berlin 1974. | MR | Zbl

[32] Wiener, N.: Certain notions in potential theory. J. Math. Phys. M. I. T. 3 (1924), 24–51.