@article{PMFA_2002_47_3_a3,
author = {Dolej\v{s}{\'\i}, V{\'\i}t and Feistauer, Miloslav and Felcman, Ji\v{r}{\'\i}},
title = {V\'ypo\v{c}tov\'a matematika a~po\v{c}{\'\i}ta\v{c}ov\'a dynamika tekutin},
journal = {Pokroky matematiky, fyziky a astronomie},
pages = {206--220},
year = {2002},
volume = {47},
number = {3},
zbl = {1052.76058},
language = {cs},
url = {http://geodesic.mathdoc.fr/item/PMFA_2002_47_3_a3/}
}
TY - JOUR AU - Dolejší, Vít AU - Feistauer, Miloslav AU - Felcman, Jiří TI - Výpočtová matematika a počítačová dynamika tekutin JO - Pokroky matematiky, fyziky a astronomie PY - 2002 SP - 206 EP - 220 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/PMFA_2002_47_3_a3/ LA - cs ID - PMFA_2002_47_3_a3 ER -
Dolejší, Vít; Feistauer, Miloslav; Felcman, Jiří. Výpočtová matematika a počítačová dynamika tekutin. Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 3, pp. 206-220. http://geodesic.mathdoc.fr/item/PMFA_2002_47_3_a3/
[1] Angot, P., Dolejší, V., Feistauer, M., Felcman, J.: Analysis of a combined barycentric finite volume — nonconforming finite element method for nonlinear convectiond̄iffusion problem. Appl. Math. 43 (4) (1998), 263–310. | MR
[2] Brdička, M.: Mechanika kontinua. Nakladatelství ČSAV, Praha 1959.
[3] Dolejší, V.: Anisotropic mesh adaptation technique for viscous flow simulation. EastW̄est J. Numer. Math. 9 (1) (2001), 1—24. | MR
[4] Feistauer, M.: Mathematical Methods in Fluid Dynamics. Longman Scientific & Technical, Harlow 1993. | MR | Zbl
[5] Feistauer, M.: Numerical Methods for Compressible Flow. In: Mathematical Fluid Mechanics. Recent Results and Open Questions (Neustupa, J., Penel, P. — editors), Birkhäuser, Basel-Boston-Berlin 2001, 105–142. | MR | Zbl
[6] Feistauer, M., Felcman, J., Lukáčová, M., Warnecke, G.: Error estimates of a combined finite volume – finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528–1548. | MR
[7] Feireisel, E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations, when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001), 83–98. | MR
[8] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Volume I, Linearized Steady Problems. Springer Tracts in Natural Philosophy, Volume 38, Springer-Verlag 1994. | MR | Zbl
[9] Girault, V., Raviart, P. A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer–Verlag, Berlin 1986. | MR | Zbl
[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach 1969. | MR | Zbl
[11] Landau, L. D., Lifschitz, E. M.: Hydrodynamik. Akademie Verlag, Berlin 1981. | Zbl
[12] Lions, P. L.: Mathematical Topics in Fluid Mechanics. Volume 2, Compressible Models. Clarendon Press, Oxford 1998. | MR | Zbl
[13] Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of general fluids. In: Comput. Methods Appl. Sci. Engrg. (Glowinski, R., Lions, J. L. — editors), North-Holland, Amsterdam 1982, 445–464. | MR | Zbl
[14] Novotný, A.: Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces. M$^3$AS 3 (1993), 725–757. | MR
[15] Ralston, A.: Základy numerické matematiky. Academia, Praha 1973.
[16] Šťastný, M., Šafařík, P.: Experimental analysis data on the transonic flow past a turbine cascade. ASME Publ. No. 90-GT-313, New York 1990.
[17] Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13 (1997), 193–253.
[18] Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam 1977. | MR | Zbl