Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?
Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 2, pp. 103-113 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 01A60, 65-03, 65F10
@article{PMFA_2002_47_2_a1,
     author = {Brandts, Jan and K\v{r}{\'\i}\v{z}ek, Michal},
     title = {Pades\'at let metody sdru\v{z}en\'ych gradient\r{u} aneb {Zvl\'adnou} po\v{c}{\'\i}ta\v{c}e soustavy milion\r{u} rovnic o~milionech nezn\'am\'ych?},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {103--113},
     year = {2002},
     volume = {47},
     number = {2},
     zbl = {1051.65029},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2002_47_2_a1/}
}
TY  - JOUR
AU  - Brandts, Jan
AU  - Křížek, Michal
TI  - Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2002
SP  - 103
EP  - 113
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PMFA_2002_47_2_a1/
LA  - cs
ID  - PMFA_2002_47_2_a1
ER  - 
%0 Journal Article
%A Brandts, Jan
%A Křížek, Michal
%T Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?
%J Pokroky matematiky, fyziky a astronomie
%D 2002
%P 103-113
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/PMFA_2002_47_2_a1/
%G cs
%F PMFA_2002_47_2_a1
Brandts, Jan; Křížek, Michal. Padesát let metody sdružených gradientů aneb Zvládnou počítače soustavy milionů rovnic o milionech neznámých?. Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 2, pp. 103-113. http://geodesic.mathdoc.fr/item/PMFA_2002_47_2_a1/

[1] Arnoldi, W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9 (1951), 17–29. | MR | Zbl

[2] Axelsson, O.: Iterative solution methods. Cambridge Univ. Press, Cambridge 1994. | MR | Zbl

[3] Axelsson, O.: Optimal preconditioners based on rate of convergence estimates for the conjugate gradient method. LN of IMAMM 99 (eds. Míka, S., Brandner, M.), Univ. of West Bohemia, Pilsen 1999, 5–56.

[4] Axelsson, O., Barker, V. A.: Finite element solution of boundary value problems. Theory and computation. Academic Press, New York 1984. | MR | Zbl

[5] Beckermann, B., Kuijlaars, A. B. J.: Superlinear convergence of conjugate gradients. SIAM J. Numer. Anal. 39 (2001), 300–329. | MR | Zbl

[6] Benzi, M., Tůma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19 (1998), 968–994. | MR

[7] Brandts, J.: Explanation of a phenomenon witnessed in pre-processed GMRES. ENUMATH 99 — Proc. of the 3rd European Conf. on Numer. Math. and Advanced Applications, Jyväskylä, Finland 1999, ed. by Neittaanmäki, P. et al., World Scientific, Singapore 2000, 440–447.

[8] Brandts, J.: Riccati algorithms for eigenvalues and invariant subspaces of large and sparse matrices. Accepted by Linear Algebra Appl. in 2001.

[9] Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progression. J. Symbolic Comput. 9 (1990), 251–280. | MR

[10] Daniel, J. W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4 (1967), 10–26. | MR | Zbl

[11] Golub, G. H., Loan, Ch. F. van: Matrix computation. The John Hopkins Univ. Press, Baltimore 1984.

[12] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards 49 (1952), 409–436. | MR | Zbl

[13] Jennings, A.: Influence of the eigenvalue spectrum on the convergence rate of the conjugate gradient method. J. Inst. Maths Applics 20 (1977), 61–72. | MR | Zbl

[14] Kaniel, S.: Estimates for some computational techniques in linear algebra. Math. Comp. 20 (1966), 369–378. | MR

[15] Křížek, M., Neittaanmäki, P.: Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical, Harlow; John Wiley & Sons, New York 1990. | MR

[16] Křížek, M., Neittaanmäki, P.: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, Dordrecht 1996. | MR

[17] Křížek, M., Segeth, K.: Numerické modelování problémů elektrotechniky. Karolinum, Praha 2001.

[18] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45 (1950), 255–282. | MR

[19] Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Standards 49 (1952), 33–53. | MR

[20] Saad, Y., Schultz, M. H.: GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986), 856–869. | MR

[21] Simoncini, V.: A stabilized QMR version of block BiCG. SIAM J. Matrix Anal. Appl. 18 (1997), 419–434. | MR | Zbl

[22] Simoncini, V.: On the convergence of restarted Krylov subspace methods. SIAM J. Matrix Anal. Appl. 22 (2000), 430–452. | MR | Zbl

[23] Sluis, A. van der, Vorst, H. van der: The rate of convergence of conjugate gradients. Numer. Math. 48 (1986), 543–560. | MR

[24] Sorensen, D. C.: Implicit application of polynomial filters in a $k$-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13 (1992), 357–385. | MR | Zbl

[25] Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354–356. | MR | Zbl

[26] Strassen, V.: Algebraic complexity theory. Handbook of Theoretical Computer Science, Vol. A (ed. van Leeuwen, J.), Elsevier, Amsterdam 1990, 634–672. | MR | Zbl

[27] Vorst, H. van der: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992), 631–644. | MR | Zbl

[28] Verzuh, F. M.: The solution of simultaneous linear equations with the aid of the 602 calculating punch. Math. Comp. (Math. Tables and other Aids to Computation) 3 (1949), 453–462. | MR

[29] Zítko, J.: Combining the preconditioned conjugate gradient method and a matrix iterative method. Appl. Math. 41 (1996), 19–39. | MR

[30] Zowe, J.: Nondifferentiable optimization — a motivation and short introduction in the subgradient and the bundle concept. ASI Proc. Comp. Math. Progr. 1985, 323–356. | MR