Matematika hudebních nástrojů
Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 1, pp. 37-49 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 00A69, 00A99, 11A55, 35L05, 74J05
@article{PMFA_2002_47_1_a5,
     author = {Hall, Rachel W. and Josi\'c, Kre\v{s}imir},
     title = {Matematika hudebn{\'\i}ch n\'astroj\r{u}},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {37--49},
     year = {2002},
     volume = {47},
     number = {1},
     zbl = {1055.00522},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_2002_47_1_a5/}
}
TY  - JOUR
AU  - Hall, Rachel W.
AU  - Josić, Krešimir
TI  - Matematika hudebních nástrojů
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 2002
SP  - 37
EP  - 49
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PMFA_2002_47_1_a5/
LA  - cs
ID  - PMFA_2002_47_1_a5
ER  - 
%0 Journal Article
%A Hall, Rachel W.
%A Josić, Krešimir
%T Matematika hudebních nástrojů
%J Pokroky matematiky, fyziky a astronomie
%D 2002
%P 37-49
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/PMFA_2002_47_1_a5/
%G cs
%F PMFA_2002_47_1_a5
Hall, Rachel W.; Josić, Krešimir. Matematika hudebních nástrojů. Pokroky matematiky, fyziky a astronomie, Tome 47 (2002) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/PMFA_2002_47_1_a5/

[1] Arnol’d, V. I.: Geometrical methods in the theory of ordinary differential equations. ($2^{\rm nd}$ ed.). Springer-Verlag, New York 1988. Z ruštiny přeložil József M. Szücs. | MR

[2] Barbour, J. M.: Music and ternary continued fractions. Amer. Math. Monthly 55 (1948), 545–555. | MR

[3] Barbour, J. M.: Tuning and Temperament. Michigan State College Press, East Lansing 1953.

[4] Barbour, J. M.: A geometrical approximation to the roots of numbers. Amer. Math. Monthly 64 (1957), 1–9. | MR | Zbl

[5] Benson, D.: Mathematics and Music. V tisku, dosažitelné na ftp://byrd.math.uga.edu/pub/html/index.html (2000).

[6] Blackwood, E.: Microtonal Etudes. Cedille Records. CDR 90000 018.

[7] Boyce, W. E., DiPrima, R. C.: Elementary Differential Equations and Boundary Value Problems. ($4^{\rm nd}$ ed.). John Wiley & Sons, Inc., New York 1986. | MR | Zbl

[8] Brimi, H.: “Willow Dance, 1994,” in The Sweet Sunny North. Shanachie Records64057.

[9] Chapman, S. J.: Drums that sound the same. Amer. Math. Monthly 102 (1955), 124–138. | MR

[10] Ctuistian, R. S., Davis, R. E., Tubis, A., Anderson, C. A., Mills, R. I., Rossing, T. D.: Effect of Air Loading on Timpani Membrane Vibrations. J. Acoust. Soc. Am. 76 (1984), 1336–1345.

[11] Devaney, R. L.: An introduction to chaotic dynamical systems. ($2^{\rm nd}$ ed.). AddisonW̄esley Publishing Company Advanced Book Program, Redwood City, CA 1989. | MR | Zbl

[12] Fletcher, N. H., Rossing, T. D.: The physics of musical instruments. ($2^{\rm nd}$ ed.). Springer-Verlag, New York 1998. | MR | Zbl

[13] Gordon, C., Webb, D. L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Amer. Math. Soc. 27 (1992), 134–138. | MR | Zbl

[14] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. ($5^{\rm nd}$ ed.). Oxford University Press, Oxford 1980.

[15] Helmholtz, H. v.: On thc sensations of tone as a physiological basis for the theory of music. Dover Publications, New York 1954. Originally published 1870, English translation by A. J. Ellis, 1875.

[16] Jorgensen, O.: Tuning. Michigan State University Press, East Lansing 1991.

[17] Kac, M.: Can one hear the shape of a drum?. Amer. Math. Monthly 73 (1966), 1–23. | MR | Zbl

[18] Kent, J. T.: Ternary continued fractions and the evenly-tempeted musical scale. CWI Newsletter 13 (1986), 21–33. | MR

[19] Mersenne, M.: Harmonie universelle, contenant la théorie et la pratique de la musique. Centre national de la recherche stientifique, Paris, facsimile edition 1963. Původně vydáno v r. 1636.

[20] Pinsky, M. A.: Partial differential equations and boundary value problems with applications. (2$^{\rm nd}$ ed.). McGraw-Hill Inc., New York 1991. | MR

[21] Rayleigh, J. W. S.: The theory of sound. ($2^{\rm nd}$ ed.). Dover Books, New York 1945. Původně vydáno v r. 1877. | MR | Zbl

[22] Rossing, T. D.: Acoustics of Percussion Instruments—part i. Phys. Teach. 14 (1976) 546–556.

[23] Rossing, T. D.: Acoustics of Percussion Instruments—part ii. Phys. Teach. 15 (1977), 278–288.

[24] Rossing, T. D.: The science of sound. ($2^{\rm nd}$ ed.) Addison-Wesley, New York 1990.

[25] Sethares, W. A.: Tuning, timbre, spectrum, scale. Springer-Verlag, New York 1999.

[26] Varberg, D. E.: Pick’s theorem revisited. Amer. Math. Monthly 92 (1985) 584–587. | MR | Zbl