Jak řešit úlohy s nejistými vstupními daty?
Pokroky matematiky, fyziky a astronomie, Tome 44 (1999) no. 2, pp. 111-116 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 49Q20, 74M10, 74M15, 74S05
@article{PMFA_1999_44_2_a1,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {Jak \v{r}e\v{s}it \'ulohy s~nejist\'ymi vstupn{\'\i}mi daty?},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {111--116},
     year = {1999},
     volume = {44},
     number = {2},
     zbl = {1055.74548},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_1999_44_2_a1/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - Jak řešit úlohy s nejistými vstupními daty?
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 1999
SP  - 111
EP  - 116
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PMFA_1999_44_2_a1/
LA  - cs
ID  - PMFA_1999_44_2_a1
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T Jak řešit úlohy s nejistými vstupními daty?
%J Pokroky matematiky, fyziky a astronomie
%D 1999
%P 111-116
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/PMFA_1999_44_2_a1/
%G cs
%F PMFA_1999_44_2_a1
Hlaváček, Ivan. Jak řešit úlohy s nejistými vstupními daty?. Pokroky matematiky, fyziky a astronomie, Tome 44 (1999) no. 2, pp. 111-116. http://geodesic.mathdoc.fr/item/PMFA_1999_44_2_a1/

[1] Friedman, A.: Stochastic Differential Equations and Applications, Vols. I, II. Academic Press 1976.

[2] Haug, E. J., Arora, J. S.: Applied Optimal Design. J. Wiley, New York 1979. (Ruský překlad Mir, Moskva 1983.)

[3] Haug, E. J., Choi, K. K., Komkov, V.: Design Sensitivity Analysis of Structural Systems. Academic Press, Orlando 1986. (Ruský překlad: Mir, Moskva 1988.) | MR | Zbl

[4] Hlaváček, I: Reliable solution of elliptic boundary value problems with respect to uncertain data. Nonlinear Analysis. Theory, Meth. & Appls. 30 (1997), 3879–3890. Proc. 2nd World Congress of Nonl. Analysts. | MR

[5] Hlaváček, I.: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997), 452–466. | MR

[6] Hlaváček, I.: Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function. Appl. Math. 41 (1996), 447–466. | MR

[7] Hlaváček, I.: Reliable solution of an elasto-plastic Reissner-Mindlin beam for the Hencky’s model with uncertain yield function. Appl. Math. 43 (1998), 223–237. | MR

[8] Hlaváček, I.: Reliable solution of a unilateral contact problem with friction, considering uncertain data. Numer. Lin. Algebra w. Appls. (V tisku.)

[9] Hlaváček, I.: Reliable solution of an elasto-plastic torsion problem. J. Math. Anal. Appl. (V redakčním řízení.)

[10] Hlaváček, I.: Reliable solution of linear parabolic problems with uncertain coefficients. Z. angew. Math. Mech. 79 (1999), 291–301. | MR

[11] Hlaváček, I., Chleboun, J.: Reliable analysis of transverse vibrations of Timoshenko-Mindlin beams with respect to uncertain shear correction factor. (V redakčním řízení.)

[12] Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Birkhäuser; Boston, Basel, Berlin 1996. | MR

[13] Chleboun, J.: Reliable solution for 1D quasilinear elliptic equation with uncertain coefficients. Zasláno do J. Math. Anal. Appl.

[14] Chleboun, J.: On a reliable solution of a quasilinear elliptic equation with uncertain coefficients: sensitivity analysis and numerical examples. (Připraveno k tisku.) | Zbl

[15] Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes (2nd edition). North-Holland/Kodansha 1989. | MR

[16] Litvinov, V. G.: Optimizacija v eliptičeskich krajevych zadačach s primeněnijami k mechanike. Nauka, Moskva 1987.

[17] Natke, H. G., Zamirowski, M.: ARMAX Modelling in Structural Dynamics. Z. angew. Math. Mech. 72 (1992), 631–637; 73 (1993), 217–221. | Zbl

[18] Nedoma, J.: Inaccurate linear equation system with a restricted-rank error matrix. Linear and Multilinear Algebra 44 (1998), 29–44. | MR | Zbl

[19] Rohn, J.: Positive definiteness and stability of interval matrices. SIAM J. Matrix Anal. Appl. 15 (1994), 175–184. | MR | Zbl

[20] Walsh, J. B.: An introduction to stochastic partial differential equations. In: Carmona, R., Kesten, H., Walsh, J. B. (ed.), École d’Été de Probabilité de Saint Flour XIV-1984. Springer LNM 1180, str. 265–437. | MR