Řešení problému $n$ těles
Pokroky matematiky, fyziky a astronomie, Tome 42 (1997) no. 3, pp. 113-121 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 70-03, 70F10
@article{PMFA_1997_42_3_a0,
     author = {Diacu, Florin},
     title = {\v{R}e\v{s}en{\'\i} probl\'emu $n$ t\v{e}les},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {113--121},
     year = {1997},
     volume = {42},
     number = {3},
     zbl = {0879.70010},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_1997_42_3_a0/}
}
TY  - JOUR
AU  - Diacu, Florin
TI  - Řešení problému $n$ těles
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 1997
SP  - 113
EP  - 121
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PMFA_1997_42_3_a0/
LA  - cs
ID  - PMFA_1997_42_3_a0
ER  - 
%0 Journal Article
%A Diacu, Florin
%T Řešení problému $n$ těles
%J Pokroky matematiky, fyziky a astronomie
%D 1997
%P 113-121
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/PMFA_1997_42_3_a0/
%G cs
%F PMFA_1997_42_3_a0
Diacu, Florin. Řešení problému $n$ těles. Pokroky matematiky, fyziky a astronomie, Tome 42 (1997) no. 3, pp. 113-121. http://geodesic.mathdoc.fr/item/PMFA_1997_42_3_a0/

[A] Anderson, K. G.: Poincaré’s discovery of homoclinic points. Archive for History of Exact Sciences 48 (1994), 133–147. | MR

[BG] Barrow-Green, J.: Oscar II’s prize competition and the error in Poincaré’s memoir on the three body problem. Archive for History of Exact Sciences 48 (1994), 107–131. | MR | Zbl

[B] Bernoulli, J.: Opera Omnia, vol. I. Georg Olms Verlagsbuchhandlung, Hildesheim, 1968. | MR

[Bi] Bisconcini, G.: Sur le problème des trois corps. Acta Mathematica 30 (1906), 49–92. | MR

[Br] Bruns, E. H.: Über die Integrale des Vielkörper-Problems. Acta Mathematica 11 (1887), 25–96.

[CJZ] Calude, C., Jürgensen, H., Zimand, M.: Is independence an exception?. Applied Math. Comput. 66 (1994), 63–76. | MR

[D1] Diacu, F. N.: Singularities of the $N$-body Problem. Les Publications CRM, Montreal, 1992. | MR | Zbl

[D2] Diacu, F. N.: Painlevé’s conjecture. The Mathematical Intelligencer 15 (1993), no. 2, 6–12. | MR | Zbl

[DH] Diacu, F. N., Holmes, P.: Celestial Encounters—The Origins of Chaos and Stability. Princeton University Press (to appear in August 1996). | MR | Zbl

[Di] J., Dieudonné: A History of Algebraic and Differential Topology 1900–1960. Birkhäuser, Boston, Basel, 1989. | MR

[G] Goldstein, R. L.: Essays in the Philosophy of Mathematics. Leicester University Press, 1965.

[Gö] Gödel, K.: Über formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme. Monatshefte für Mathematik und Physik 38 (1931), 173–198.

[P] Poincaré, H.: New Methods of Celestial Mechanics (with an introduction by D. L. Gorogg). American Institute of Physics, 1993.

[S] Saari, D. G.: A visit to the Newtonian $N$-body problem via elementary complex variables. The American Mathematical Monthly 97 (1990), 105–119. | MR | Zbl

[Si] Siegel, C. L.: Der Dreierstoss. Annals of Mathematics 42 (1941), 127–168. | MR | Zbl

[Su1] Sundman, K.: Recherches sur le Problème des trois corps. Acta Societatis Scientiarium Fennicae 34 (1907), no. 6.

[Su2] Sundman, K.: Nouvelles recherches sur le problème des trois corps. Acta Societatis Scientiarium Fennicae 35 (1909), no. 9.

[Su3] Sundman, K.: Mémoire sur le problème des trois corps. Acta Mathematica 36 (1912), 105–179.

[U] Urenko, J. B.: Improbability of collisions in Newtonian gravitational systems of specified angular momentum. SIAM J. Appl. Math. 36 (1979), 123–147. | MR | Zbl

[Wa] Wang, Q.: The global solution of the $n$-body problem. Celestial Mechanics 50 (1991), 73–88. | MR | Zbl

[W] Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton, NJ, 1941. | MR | Zbl