Do nekonečna v konečném čase
Pokroky matematiky, fyziky a astronomie, Tome 42 (1997) no. 2, pp. 90-102 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 70F10, 70F35
@article{PMFA_1997_42_2_a2,
     author = {Saari, Donald G. and Xia, Zhihong (Jeff)},
     title = {Do nekone\v{c}na v kone\v{c}n\'em \v{c}ase},
     journal = {Pokroky matematiky, fyziky a astronomie},
     pages = {90--102},
     year = {1997},
     volume = {42},
     number = {2},
     zbl = {0879.70009},
     language = {cs},
     url = {http://geodesic.mathdoc.fr/item/PMFA_1997_42_2_a2/}
}
TY  - JOUR
AU  - Saari, Donald G.
AU  - Xia, Zhihong (Jeff)
TI  - Do nekonečna v konečném čase
JO  - Pokroky matematiky, fyziky a astronomie
PY  - 1997
SP  - 90
EP  - 102
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PMFA_1997_42_2_a2/
LA  - cs
ID  - PMFA_1997_42_2_a2
ER  - 
%0 Journal Article
%A Saari, Donald G.
%A Xia, Zhihong (Jeff)
%T Do nekonečna v konečném čase
%J Pokroky matematiky, fyziky a astronomie
%D 1997
%P 90-102
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/PMFA_1997_42_2_a2/
%G cs
%F PMFA_1997_42_2_a2
Saari, Donald G.; Xia, Zhihong (Jeff). Do nekonečna v konečném čase. Pokroky matematiky, fyziky a astronomie, Tome 42 (1997) no. 2, pp. 90-102. http://geodesic.mathdoc.fr/item/PMFA_1997_42_2_a2/

[A] Anosov, D.: Smooth dynamical systems. Introductory article. Amer. Math. Soc. Transl. 125 (1985), 1–20. | Zbl

[Ch] Chazy, J.: Sur les singularités impossible du problème des $n$ corps. C. R. Acad. Sci. Paris 170 (1920), 575–577.

[D1] Devaney, R.: Triple collisions in the planar isosceles three-body problem. Invent. Math. 60 (1980), 249–267. | MR

[D2] Devaney, R.: Singularities in classical mechanical systems. Basel and Boston, MA, Birkhäuser 1981. | MR | Zbl

[G] Gerver, J.: The existence of pseudocollisions in the plane. J. Differential Equations 89 (1991), 1–68. | MR | Zbl

[L] Littlewood, J.: Some problems in real and complex analysis. Boston, MA, Heath 1969. | MR

[McG1] McGehee, R.: Von Zeipel’s theorem on singularities in celestial mechanics. Exposition. Math. 4 (1986), 335–345. | MR | Zbl

[McG2] McGehee, R.: Triple collisions in the collinear three-body problem. Invent. Math. 29 (1974), 191–227. | MR

[MM] Mather, J., McGehee, R.: Solutions of the collinear four-body problem which become unbounded in finite time. Lecture Notes Phys. 38 (1975), 573–597. | MR | Zbl

[Mo1] Moekel, R.: Orbits of the three-body problem which pass infinitely close to triple collision. Amer. J. Math.

[Mo2] Moekel, R.: Heteroclinic phenomena in the isosceles three-body problem. SIAM J. Math. Anal. 15 (1984). | MR

[MS] Marchal, C., Saari, D. G.: On the final evolution of the $n$-body problem. J. Differential Equations 20 (1976), 150–186. | MR | Zbl

[Pa] Painlevé, P.: Leçons sur la théorie analytic des équations différentielles. Paris, Hermann 1897.

[P1] Pollard, H.: A mathematical introduction to celestial mechanics. Carus Monograph No. 18, Math. Assoc. Amer. (1976). | MR

[P2] Pollard, H.: Gravitational systems. J. Math. Mech. 17 (1967), 601–612. | MR | Zbl

[PS1] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 1. Arch. Rational Mech. Math. 30 (1968), 263–269. | MR

[PS2] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 2. Academic Press 1970, 255–259. | MR

[R] Robinson, C.: Dynamical systems. Boca Raton, FL, CRC Press, Inc., 1995. | MR | Zbl

[S1] Saari, D. G.: Singularities of the Newtonian $n$-body problem. Ph. D. Dissertation, Purdue University 1967.

[S2] Saari, D. G.: Improbability of collisions in Newtonian gravitational systems II. Trans. Amer. Math. Soc. 181 (1973), 351–368. | MR | Zbl

[S3] Saari, D. G.: Singularities and collisions of Newtonian gravitational systems. Arch. Rational Mech. Math. 49 (1973), 311–320. | MR | Zbl

[S4] Saari, D. G.: A global existence theorem for the four-body problem of Newtonian mechanics. J. Differential Equations 26 (1977), 80–111. | MR | Zbl

[Se] Siegel, C. L.: Der Dreierstoss. Ann. of Math. 42 (1941), 127–168. | MR | Zbl

[Si] Simó, C.: Analysis of triple-collision in the isosceles problem. New York, Marcel Dekker 1980. | MR

[Sp] Sperling, H. J.: On the real singularities of the $n$-body problem. J. Reine Angew. Math. 245 (1970), 15–40. | MR | Zbl

[Su] Sundman, K.: Le problème des trois corps. Acta Soc. Sci. Fenn. 35 (1909).

[SX] Saari, D. G., Xia, Z.: Oscillatory and superhyperbolic solutions in Newtonian systems. J. Differential Equations 82 (1989), 342–355. | MR

[VZ] Zeipel, H. von: Sur les singularités du problème des $n$ corps. Ark. Mat. Astronom. Fys. 4 (1904).

[W] Wintner, A.: The analytical foundations of celestial mechanics. Princeton, NJ, Princeton University Press 1947. | MR | Zbl

[X1] Xia, Z.: The existence of non-collision singularities in Newtonian systems. Ph. D. Dissertation, Northwestern University 1988.

[X2] Xia, Z.: The existence of non-collision singularities in Newtonian systems. Ann. of Math. 135 (1992), 411–468. | MR