Emerging Problems in Approximation Theory for the Numerical Solution of the Nonlinear Schrödinger Equation
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 125
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present some open problems pertaining to the approximation theory involved in the solution of the Nonlinear Schrödinger (NLS) equation. For this important equation, any Initial Value Problem (IVP) can be theoretically solved by the Inverse Scattering Transform (IST) technique whose main steps involve the solution of Volterra equations with structured kernels on unbounded domains, the solution of Fredholm integral equations and the identification of coefficients and parameters of monomial-exponential sums. The aim of the paper is twofold: propose a method for solving the above mentioned problems under particular hypothesis; arise interest in the issues illustrated to achieve an effective method for solving the problem under more general assumptions
Classification :
41A46 65R20 35P25
@article{PIM_2014_N_S_96_110_a9,
author = {L. Fermo and C. Van der Mee and S. Seatzu},
title = {Emerging {Problems} in {Approximation} {Theory} for the {Numerical} {Solution} of the {Nonlinear} {Schr\"odinger} {Equation}},
journal = {Publications de l'Institut Math\'ematique},
pages = {125 },
publisher = {mathdoc},
volume = {_N_S_96},
number = {110},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a9/}
}
TY - JOUR AU - L. Fermo AU - C. Van der Mee AU - S. Seatzu TI - Emerging Problems in Approximation Theory for the Numerical Solution of the Nonlinear Schrödinger Equation JO - Publications de l'Institut Mathématique PY - 2014 SP - 125 VL - _N_S_96 IS - 110 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a9/ LA - en ID - PIM_2014_N_S_96_110_a9 ER -
%0 Journal Article %A L. Fermo %A C. Van der Mee %A S. Seatzu %T Emerging Problems in Approximation Theory for the Numerical Solution of the Nonlinear Schrödinger Equation %J Publications de l'Institut Mathématique %D 2014 %P 125 %V _N_S_96 %N 110 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a9/ %G en %F PIM_2014_N_S_96_110_a9
L. Fermo; C. Van der Mee; S. Seatzu. Emerging Problems in Approximation Theory for the Numerical Solution of the Nonlinear Schrödinger Equation. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 125 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a9/