New Integral Representations in the Linear Theory of Viscoelastic Materials with Voids
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate the two basic internal BVPs related to the linear theory of viscoelasticity for Kelvin-Voigt materials with voids by means of the potential theory. By using an indirect boundary integral method, we represent the solution of the first (second) BVP of steady vibrations in terms of a simple (double) layer elastopotential. The representations achieved are different from the previously known ones. Our approach hinges on the theory of reducible operators and on the theory of differential forms.
Classification : 31B10 35C15 74D05
Keywords: viscoelasticity, Kelvin-Voigt material with voids, integral equation methods
@article{PIM_2014_N_S_96_110_a5,
     author = {A. Cialdea and E. Dolce and V. Leonessa and A. Malaspina},
     title = {New {Integral} {Representations} in the {Linear} {Theory} of {Viscoelastic} {Materials} with {Voids}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a5/}
}
TY  - JOUR
AU  - A. Cialdea
AU  - E. Dolce
AU  - V. Leonessa
AU  - A. Malaspina
TI  - New Integral Representations in the Linear Theory of Viscoelastic Materials with Voids
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 49 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a5/
LA  - en
ID  - PIM_2014_N_S_96_110_a5
ER  - 
%0 Journal Article
%A A. Cialdea
%A E. Dolce
%A V. Leonessa
%A A. Malaspina
%T New Integral Representations in the Linear Theory of Viscoelastic Materials with Voids
%J Publications de l'Institut Mathématique
%D 2014
%P 49 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a5/
%G en
%F PIM_2014_N_S_96_110_a5
A. Cialdea; E. Dolce; V. Leonessa; A. Malaspina. New Integral Representations in the Linear Theory of Viscoelastic Materials with Voids. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 49 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a5/