Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 41
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We apply hyperbolic potential theory to the study of the asymptotics of Fekete type points for univariate ridge function interpolation.
Classification :
41A05 31C15
Keywords: ridge function, interpolation, Fekete type points, hyperbolic capacity
Keywords: ridge function, interpolation, Fekete type points, hyperbolic capacity
@article{PIM_2014_N_S_96_110_a4,
author = {Len Bos and Stefano De Marchi and Norm Levenberg},
title = {Fekete {Type} {Points} for {Ridge} {Function} {Interpolation} and {Hyperbolic} {Potential} {Theory}},
journal = {Publications de l'Institut Math\'ematique},
pages = {41 },
publisher = {mathdoc},
volume = {_N_S_96},
number = {110},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/}
}
TY - JOUR AU - Len Bos AU - Stefano De Marchi AU - Norm Levenberg TI - Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory JO - Publications de l'Institut Mathématique PY - 2014 SP - 41 VL - _N_S_96 IS - 110 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/ LA - en ID - PIM_2014_N_S_96_110_a4 ER -
%0 Journal Article %A Len Bos %A Stefano De Marchi %A Norm Levenberg %T Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory %J Publications de l'Institut Mathématique %D 2014 %P 41 %V _N_S_96 %N 110 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/ %G en %F PIM_2014_N_S_96_110_a4
Len Bos; Stefano De Marchi; Norm Levenberg. Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 41 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/