Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 41 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We apply hyperbolic potential theory to the study of the asymptotics of Fekete type points for univariate ridge function interpolation.
Classification : 41A05 31C15
Keywords: ridge function, interpolation, Fekete type points, hyperbolic capacity
@article{PIM_2014_N_S_96_110_a4,
     author = {Len Bos and Stefano De Marchi and Norm Levenberg},
     title = {Fekete {Type} {Points} for {Ridge} {Function} {Interpolation} and {Hyperbolic} {Potential} {Theory}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/}
}
TY  - JOUR
AU  - Len Bos
AU  - Stefano De Marchi
AU  - Norm Levenberg
TI  - Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 41 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/
LA  - en
ID  - PIM_2014_N_S_96_110_a4
ER  - 
%0 Journal Article
%A Len Bos
%A Stefano De Marchi
%A Norm Levenberg
%T Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory
%J Publications de l'Institut Mathématique
%D 2014
%P 41 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/
%G en
%F PIM_2014_N_S_96_110_a4
Len Bos; Stefano De Marchi; Norm Levenberg. Fekete Type Points for Ridge Function Interpolation and Hyperbolic Potential Theory. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 41 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a4/