Convergence in Capacity of Rational Approximants of Meromorphic Functions
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $f$ be meromorphic on the compact set $E\subset\mathbb{C}$ with maximal Green domain of meromorphy $E_{\rho(f)}$, $\rho(f)\infty$. We investigate rational approximants with numerator degree $\leq n$ and denominator degree $\leq m_n$ for $f$. We show that the geometric convergence rate on $E$ implies convergence in capacity outside $E$ if $m_n=o(n)$ as $n\to\infty$. Further, we show that the condition is sharp and that the convergence in capacity is uniform for a subsequence $\Lambda\subset\\mathbb{N}$.
Classification : 41A20 41A24 30E10
Keywords: rational approximation, convergence in capacity
@article{PIM_2014_N_S_96_110_a3,
     author = {Hans-Peter Blatt},
     title = {Convergence in {Capacity} of {Rational} {Approximants} of {Meromorphic} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/}
}
TY  - JOUR
AU  - Hans-Peter Blatt
TI  - Convergence in Capacity of Rational Approximants of Meromorphic Functions
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 31 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/
LA  - en
ID  - PIM_2014_N_S_96_110_a3
ER  - 
%0 Journal Article
%A Hans-Peter Blatt
%T Convergence in Capacity of Rational Approximants of Meromorphic Functions
%J Publications de l'Institut Mathématique
%D 2014
%P 31 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/
%G en
%F PIM_2014_N_S_96_110_a3
Hans-Peter Blatt. Convergence in Capacity of Rational Approximants of Meromorphic Functions. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 31 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/