Convergence in Capacity of Rational Approximants of Meromorphic Functions
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f$ be meromorphic on the compact set $E\subset\mathbb{C}$ with maximal Green domain of meromorphy $E_{\rho(f)}$, $\rho(f)\infty$. We investigate rational approximants with numerator degree $\leq n$ and denominator degree $\leq m_n$ for $f$. We show that the geometric convergence rate on $E$ implies convergence in capacity outside $E$ if $m_n=o(n)$ as $n\to\infty$. Further, we show that the condition is sharp and that the convergence in capacity is uniform for a subsequence $\Lambda\subset\\mathbb{N}$.
Classification :
41A20 41A24 30E10
Keywords: rational approximation, convergence in capacity
Keywords: rational approximation, convergence in capacity
@article{PIM_2014_N_S_96_110_a3,
author = {Hans-Peter Blatt},
title = {Convergence in {Capacity} of {Rational} {Approximants} of {Meromorphic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
publisher = {mathdoc},
volume = {_N_S_96},
number = {110},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/}
}
TY - JOUR AU - Hans-Peter Blatt TI - Convergence in Capacity of Rational Approximants of Meromorphic Functions JO - Publications de l'Institut Mathématique PY - 2014 SP - 31 VL - _N_S_96 IS - 110 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/ LA - en ID - PIM_2014_N_S_96_110_a3 ER -
Hans-Peter Blatt. Convergence in Capacity of Rational Approximants of Meromorphic Functions. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 31 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a3/