Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{PIM_2014_N_S_96_110_a2, author = {Elena E. Berdysheva and Bing-Zheng Li}, title = {On $\boldsymbol{L^p}$-convergence of {Bernstein-Durrmeyer} {Operators} with {Respect} to {Arbitrary} {Measure}}, journal = {Publications de l'Institut Math\'ematique}, pages = {23 }, publisher = {mathdoc}, volume = {_N_S_96}, number = {110}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a2/} }
TY - JOUR AU - Elena E. Berdysheva AU - Bing-Zheng Li TI - On $\boldsymbol{L^p}$-convergence of Bernstein-Durrmeyer Operators with Respect to Arbitrary Measure JO - Publications de l'Institut Mathématique PY - 2014 SP - 23 VL - _N_S_96 IS - 110 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a2/ LA - en ID - PIM_2014_N_S_96_110_a2 ER -
%0 Journal Article %A Elena E. Berdysheva %A Bing-Zheng Li %T On $\boldsymbol{L^p}$-convergence of Bernstein-Durrmeyer Operators with Respect to Arbitrary Measure %J Publications de l'Institut Mathématique %D 2014 %P 23 %V _N_S_96 %N 110 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a2/ %G en %F PIM_2014_N_S_96_110_a2
Elena E. Berdysheva; Bing-Zheng Li. On $\boldsymbol{L^p}$-convergence of Bernstein-Durrmeyer Operators with Respect to Arbitrary Measure. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 23 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a2/