On a Convergent Process of Bernstein
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
Classification :
41A05
Keywords: interpolation, Bernstein process, Jacobi roots
Keywords: interpolation, Bernstein process, Jacobi roots
@article{PIM_2014_N_S_96_110_a17,
author = {L\'aszl\'o Szili and P\'eter V\'ertesi},
title = {On a {Convergent} {Process} of {Bernstein}},
journal = {Publications de l'Institut Math\'ematique},
pages = {233 },
publisher = {mathdoc},
volume = {_N_S_96},
number = {110},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/}
}
László Szili; Péter Vértesi. On a Convergent Process of Bernstein. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/