On a Convergent Process of Bernstein
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
Classification : 41A05
Keywords: interpolation, Bernstein process, Jacobi roots
@article{PIM_2014_N_S_96_110_a17,
     author = {L\'aszl\'o Szili and P\'eter V\'ertesi},
     title = {On a {Convergent} {Process} of {Bernstein}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {233 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/}
}
TY  - JOUR
AU  - László Szili
AU  - Péter Vértesi
TI  - On a Convergent Process of Bernstein
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 233 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/
LA  - en
ID  - PIM_2014_N_S_96_110_a17
ER  - 
%0 Journal Article
%A László Szili
%A Péter Vértesi
%T On a Convergent Process of Bernstein
%J Publications de l'Institut Mathématique
%D 2014
%P 233 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/
%G en
%F PIM_2014_N_S_96_110_a17
László Szili; Péter Vértesi. On a Convergent Process of Bernstein. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/