On a Convergent Process of Bernstein
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
Classification : 41A05
Keywords: interpolation, Bernstein process, Jacobi roots
@article{PIM_2014_N_S_96_110_a17,
     author = {L\'aszl\'o Szili and P\'eter V\'ertesi},
     title = {On a {Convergent} {Process} of {Bernstein}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {233 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/}
}
TY  - JOUR
AU  - László Szili
AU  - Péter Vértesi
TI  - On a Convergent Process of Bernstein
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 233 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/
LA  - en
ID  - PIM_2014_N_S_96_110_a17
ER  - 
%0 Journal Article
%A László Szili
%A Péter Vértesi
%T On a Convergent Process of Bernstein
%J Publications de l'Institut Mathématique
%D 2014
%P 233 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/
%G en
%F PIM_2014_N_S_96_110_a17
László Szili; Péter Vértesi. On a Convergent Process of Bernstein. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/