On a Convergent Process of Bernstein
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Bernstein in 1930 defined a convergent interpolation process based on the roots of the Chebyshev polynomials. We prove a similar statement for certain Jacobi roots.
Classification :
41A05
Keywords: interpolation, Bernstein process, Jacobi roots
Keywords: interpolation, Bernstein process, Jacobi roots
@article{PIM_2014_N_S_96_110_a17,
author = {L\'aszl\'o Szili and P\'eter V\'ertesi},
title = {On a {Convergent} {Process} of {Bernstein}},
journal = {Publications de l'Institut Math\'ematique},
pages = {233 },
year = {2014},
volume = {_N_S_96},
number = {110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/}
}
László Szili; Péter Vértesi. On a Convergent Process of Bernstein. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 233 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a17/