Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove weighted Markov-Bernstein inequalities of the form $ ıt_{-ıty}^{ıfty}|f'(x)|^pw(x)\,dx eq C(igma+1)^pıt_{-ıty}^{ıfty}|f(x)|^pw(x)\,dx $ Here $w$ satisfies certain doubling type properties, $f$ is an entire function of exponential type $\leq\sigma$, $p>0$, and $C$ is independent of $f$ and $\sigma$. For example, $w(x)=(1+x^2)^{\alpha}$ satisfies the conditions for any $\alpha\in\mathbb{R}$. Classical doubling inequalities of Mastroianni and Totik inspired this result.
Classification : 42C05
Keywords: entire functions of exponential type, Bernstein inequalities
@article{PIM_2014_N_S_96_110_a13,
     author = {Doron S. Lubinsky},
     title = {Weighted {Markov-Bernstein} {Inequalities} for {Entire} {Functions} of {Exponential} {Type}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {181 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/}
}
TY  - JOUR
AU  - Doron S. Lubinsky
TI  - Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 181 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/
LA  - en
ID  - PIM_2014_N_S_96_110_a13
ER  - 
%0 Journal Article
%A Doron S. Lubinsky
%T Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
%J Publications de l'Institut Mathématique
%D 2014
%P 181 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/
%G en
%F PIM_2014_N_S_96_110_a13
Doron S. Lubinsky. Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/