Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove weighted Markov-Bernstein inequalities of the form $ ıt_{-ıty}^{ıfty}|f'(x)|^pw(x)\,dx eq C(igma+1)^pıt_{-ıty}^{ıfty}|f(x)|^pw(x)\,dx $ Here $w$ satisfies certain doubling type properties, $f$ is an entire function of exponential type $\leq\sigma$, $p>0$, and $C$ is independent of $f$ and $\sigma$. For example, $w(x)=(1+x^2)^{\alpha}$ satisfies the conditions for any $\alpha\in\mathbb{R}$. Classical doubling inequalities of Mastroianni and Totik inspired this result.
Classification :
42C05
Keywords: entire functions of exponential type, Bernstein inequalities
Keywords: entire functions of exponential type, Bernstein inequalities
@article{PIM_2014_N_S_96_110_a13,
author = {Doron S. Lubinsky},
title = {Weighted {Markov-Bernstein} {Inequalities} for {Entire} {Functions} of {Exponential} {Type}},
journal = {Publications de l'Institut Math\'ematique},
pages = {181 },
publisher = {mathdoc},
volume = {_N_S_96},
number = {110},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/}
}
TY - JOUR AU - Doron S. Lubinsky TI - Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type JO - Publications de l'Institut Mathématique PY - 2014 SP - 181 VL - _N_S_96 IS - 110 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/ LA - en ID - PIM_2014_N_S_96_110_a13 ER -
%0 Journal Article %A Doron S. Lubinsky %T Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type %J Publications de l'Institut Mathématique %D 2014 %P 181 %V _N_S_96 %N 110 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/ %G en %F PIM_2014_N_S_96_110_a13
Doron S. Lubinsky. Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/