Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove weighted Markov-Bernstein inequalities of the form $ ıt_{-ıty}^{ıfty}|f'(x)|^pw(x)\,dx eq C(igma+1)^pıt_{-ıty}^{ıfty}|f(x)|^pw(x)\,dx $ Here $w$ satisfies certain doubling type properties, $f$ is an entire function of exponential type $\leq\sigma$, $p>0$, and $C$ is independent of $f$ and $\sigma$. For example, $w(x)=(1+x^2)^{\alpha}$ satisfies the conditions for any $\alpha\in\mathbb{R}$. Classical doubling inequalities of Mastroianni and Totik inspired this result.
Classification : 42C05
Keywords: entire functions of exponential type, Bernstein inequalities
@article{PIM_2014_N_S_96_110_a13,
     author = {Doron S. Lubinsky},
     title = {Weighted {Markov-Bernstein} {Inequalities} for {Entire} {Functions} of {Exponential} {Type}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {181 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/}
}
TY  - JOUR
AU  - Doron S. Lubinsky
TI  - Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 181 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/
LA  - en
ID  - PIM_2014_N_S_96_110_a13
ER  - 
%0 Journal Article
%A Doron S. Lubinsky
%T Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
%J Publications de l'Institut Mathématique
%D 2014
%P 181 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/
%G en
%F PIM_2014_N_S_96_110_a13
Doron S. Lubinsky. Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/