Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove weighted Markov-Bernstein inequalities of the form $ ıt_{-ıty}^{ıfty}|f'(x)|^pw(x)\,dx eq C(igma+1)^pıt_{-ıty}^{ıfty}|f(x)|^pw(x)\,dx $ Here $w$ satisfies certain doubling type properties, $f$ is an entire function of exponential type $\leq\sigma$, $p>0$, and $C$ is independent of $f$ and $\sigma$. For example, $w(x)=(1+x^2)^{\alpha}$ satisfies the conditions for any $\alpha\in\mathbb{R}$. Classical doubling inequalities of Mastroianni and Totik inspired this result.
Classification :
42C05
Keywords: entire functions of exponential type, Bernstein inequalities
Keywords: entire functions of exponential type, Bernstein inequalities
@article{PIM_2014_N_S_96_110_a13,
author = {Doron S. Lubinsky},
title = {Weighted {Markov-Bernstein} {Inequalities} for {Entire} {Functions} of {Exponential} {Type}},
journal = {Publications de l'Institut Math\'ematique},
pages = {181 },
year = {2014},
volume = {_N_S_96},
number = {110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/}
}
TY - JOUR AU - Doron S. Lubinsky TI - Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type JO - Publications de l'Institut Mathématique PY - 2014 SP - 181 VL - _N_S_96 IS - 110 UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/ LA - en ID - PIM_2014_N_S_96_110_a13 ER -
Doron S. Lubinsky. Weighted Markov-Bernstein Inequalities for Entire Functions of Exponential Type. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 181 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a13/