On the Complexity of (Restricted) $\mathcal{ALCI}r$
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 133
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider a new description logic $\mathcal{ALCI}r$ that extends $\mathcal{ALCI}$ with role inclusion axioms of the form $R \sqsubseteq Q R_1 \dots R_m$ satisfying a certain regularity condition. We prove that concept satisfiability with respect to RBoxes in this logic is \ExpTime-hard. We then define a restriction $\mathcal{ALCI}r^-$ of $\mathcal{ALCI}r$ and show that concept satisfiability with respect to RBoxes in $\mathcal{ALCI}r^-$ is \PSpace-complete.
Classification :
68T27 03B70 68T30 68W40 68Q25
@article{PIM_2014_N_S_95_109_a9,
author = {Milenko Mosurovi\'c and Michael Zakharyaschev},
title = {On the {Complexity} of {(Restricted)} $\mathcal{ALCI}r$},
journal = {Publications de l'Institut Math\'ematique},
pages = {133 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a9/}
}
TY - JOUR
AU - Milenko Mosurović
AU - Michael Zakharyaschev
TI - On the Complexity of (Restricted) $\mathcal{ALCI}r$
JO - Publications de l'Institut Mathématique
PY - 2014
SP - 133
VL - _N_S_95
IS - 109
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a9/
LA - en
ID - PIM_2014_N_S_95_109_a9
ER -
Milenko Mosurović; Michael Zakharyaschev. On the Complexity of (Restricted) $\mathcal{ALCI}r$. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 133 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a9/