Unknotting Numbers of Alternating Knot and Link Families
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

After proving a theorem about the general formulae for the signature of alternating knot and link families, we distinguished all families of knots obtained from generating alternating knots with at most 10 crossings and alternating links with at most 9 crossings, for which the unknotting (unlinking) number can be confirmed by using the general formulae for signatures.
Classification : 57M25 57M27
@article{PIM_2014_N_S_95_109_a5,
     author = {Slavik Jablan and Ljiljana Radovi\'c},
     title = {Unknotting {Numbers} of {Alternating} {Knot} and {Link} {Families}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {87 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/}
}
TY  - JOUR
AU  - Slavik Jablan
AU  - Ljiljana Radović
TI  - Unknotting Numbers of Alternating Knot and Link Families
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 87 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/
LA  - en
ID  - PIM_2014_N_S_95_109_a5
ER  - 
%0 Journal Article
%A Slavik Jablan
%A Ljiljana Radović
%T Unknotting Numbers of Alternating Knot and Link Families
%J Publications de l'Institut Mathématique
%D 2014
%P 87 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/
%G en
%F PIM_2014_N_S_95_109_a5
Slavik Jablan; Ljiljana Radović. Unknotting Numbers of Alternating Knot and Link Families. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/