Unknotting Numbers of Alternating Knot and Link Families
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
After proving a theorem about the general formulae for the signature of alternating knot and link families, we distinguished all families of knots obtained from generating alternating knots with at most 10 crossings and alternating links with at most 9 crossings, for which the unknotting (unlinking) number can be confirmed by using the general formulae for signatures.
Classification :
57M25 57M27
@article{PIM_2014_N_S_95_109_a5,
author = {Slavik Jablan and Ljiljana Radovi\'c},
title = {Unknotting {Numbers} of {Alternating} {Knot} and {Link} {Families}},
journal = {Publications de l'Institut Math\'ematique},
pages = {87 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/}
}
Slavik Jablan; Ljiljana Radović. Unknotting Numbers of Alternating Knot and Link Families. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/