Unknotting Numbers of Alternating Knot and Link Families
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
After proving a theorem about the general formulae for the signature of alternating knot and link families, we distinguished all families of knots obtained from generating alternating knots with at most 10 crossings and alternating links with at most 9 crossings, for which the unknotting (unlinking) number can be confirmed by using the general formulae for signatures.
Classification :
57M25 57M27
@article{PIM_2014_N_S_95_109_a5,
author = {Slavik Jablan and Ljiljana Radovi\'c},
title = {Unknotting {Numbers} of {Alternating} {Knot} and {Link} {Families}},
journal = {Publications de l'Institut Math\'ematique},
pages = {87 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/}
}
TY - JOUR AU - Slavik Jablan AU - Ljiljana Radović TI - Unknotting Numbers of Alternating Knot and Link Families JO - Publications de l'Institut Mathématique PY - 2014 SP - 87 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/ LA - en ID - PIM_2014_N_S_95_109_a5 ER -
Slavik Jablan; Ljiljana Radović. Unknotting Numbers of Alternating Knot and Link Families. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 87 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a5/