Immersions and Embeddings of Quasitoric Manifolds over the Cube
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 63
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A quasitoric manifold $M^{2n}$ over the cube $I^n$ is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold $M^{2n}$, when $n$ is a power of 2, has interesting properties: $\operatorname{imm}(M^{2n})=4n-2$, $peratorname{em}(M^{2n})=4n-1$ and $N(M^{2n})\geq 8n-3$.
Classification :
57N35 57R20 52B20
Keywords: quasitoric manifolds, the cube, the Stiefel-Whitney classes, immersions, embeddings
Keywords: quasitoric manifolds, the cube, the Stiefel-Whitney classes, immersions, embeddings
@article{PIM_2014_N_S_95_109_a3,
author = {{\DJ}or{\dj}e Barali\'c},
title = {Immersions and {Embeddings} of {Quasitoric} {Manifolds} over the {Cube}},
journal = {Publications de l'Institut Math\'ematique},
pages = {63 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/}
}
Đorđe Baralić. Immersions and Embeddings of Quasitoric Manifolds over the Cube. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 63 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/