Immersions and Embeddings of Quasitoric Manifolds over the Cube
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 63 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A quasitoric manifold $M^{2n}$ over the cube $I^n$ is studied. The Stiefel-Whitney classes are calculated and used as the obstructions for immersions, embeddings and totally skew embeddings. The manifold $M^{2n}$, when $n$ is a power of 2, has interesting properties: $\operatorname{imm}(M^{2n})=4n-2$, $peratorname{em}(M^{2n})=4n-1$ and $N(M^{2n})\geq 8n-3$.
Classification : 57N35 57R20 52B20
Keywords: quasitoric manifolds, the cube, the Stiefel-Whitney classes, immersions, embeddings
@article{PIM_2014_N_S_95_109_a3,
     author = {{\DJ}or{\dj}e Barali\'c},
     title = {Immersions and {Embeddings} of {Quasitoric} {Manifolds} over the {Cube}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {63 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/}
}
TY  - JOUR
AU  - Đorđe Baralić
TI  - Immersions and Embeddings of Quasitoric Manifolds over the Cube
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 63 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/
LA  - en
ID  - PIM_2014_N_S_95_109_a3
ER  - 
%0 Journal Article
%A Đorđe Baralić
%T Immersions and Embeddings of Quasitoric Manifolds over the Cube
%J Publications de l'Institut Mathématique
%D 2014
%P 63 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/
%G en
%F PIM_2014_N_S_95_109_a3
Đorđe Baralić. Immersions and Embeddings of Quasitoric Manifolds over the Cube. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 63 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a3/