Asymmetric Generalizations of the Filbert Matrix and Variants
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 267
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Four generalizations of the Filbert matrix are considered, with additional asymmetric parameter settings. Explicit formule are derived for the LU-decompositions, their inverses, and the inverse matrix. The approach is mainly to use the $q$-analysis and to leave the justification of the necessary identities to the $q$-version of Zeilberger's algorithm for some of them, and for the rest of the necessary identities, to guess the relevant quantities and proving them later by induction.
Classification :
11B39 05A30 15A23
@article{PIM_2014_N_S_95_109_a21,
author = {Emrah K{\i}l{\i}\c{c} and Helmut Prodinger},
title = {Asymmetric {Generalizations} of the {Filbert} {Matrix} and {Variants}},
journal = {Publications de l'Institut Math\'ematique},
pages = {267 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/}
}
TY - JOUR AU - Emrah Kılıç AU - Helmut Prodinger TI - Asymmetric Generalizations of the Filbert Matrix and Variants JO - Publications de l'Institut Mathématique PY - 2014 SP - 267 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/ LA - en ID - PIM_2014_N_S_95_109_a21 ER -
Emrah Kılıç; Helmut Prodinger. Asymmetric Generalizations of the Filbert Matrix and Variants. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 267 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/