Asymmetric Generalizations of the Filbert Matrix and Variants
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 267
Four generalizations of the Filbert matrix are considered, with additional asymmetric parameter settings. Explicit formule are derived for the LU-decompositions, their inverses, and the inverse matrix. The approach is mainly to use the $q$-analysis and to leave the justification of the necessary identities to the $q$-version of Zeilberger's algorithm for some of them, and for the rest of the necessary identities, to guess the relevant quantities and proving them later by induction.
Classification :
11B39 05A30 15A23
@article{PIM_2014_N_S_95_109_a21,
author = {Emrah K{\i}l{\i}\c{c} and Helmut Prodinger},
title = {Asymmetric {Generalizations} of the {Filbert} {Matrix} and {Variants}},
journal = {Publications de l'Institut Math\'ematique},
pages = {267 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/}
}
TY - JOUR AU - Emrah Kılıç AU - Helmut Prodinger TI - Asymmetric Generalizations of the Filbert Matrix and Variants JO - Publications de l'Institut Mathématique PY - 2014 SP - 267 VL - _N_S_95 IS - 109 UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/ LA - en ID - PIM_2014_N_S_95_109_a21 ER -
Emrah Kılıç; Helmut Prodinger. Asymmetric Generalizations of the Filbert Matrix and Variants. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 267 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a21/