On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 239 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We study a Para-Sasakian manifold admitting a semi-symmetric metric connection whose projective curvature tensor satisfies certain curvature conditions.
Classification : 53C15 53C25
Keywords: para-Sasakian manifold, semi-symmetric metric connection, recurrent, $\eta$-Einstein, $\xi$-projectively flat, locally $\phi$-projectively symmetric manifold
@article{PIM_2014_N_S_95_109_a18,
     author = {Ajit Barman},
     title = {On {Para-Sasakian} {Manifolds} {Admitting} {Semi-symmetric} {Metric} {Connection}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {239 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/}
}
TY  - JOUR
AU  - Ajit Barman
TI  - On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 239 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/
LA  - en
ID  - PIM_2014_N_S_95_109_a18
ER  - 
%0 Journal Article
%A Ajit Barman
%T On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection
%J Publications de l'Institut Mathématique
%D 2014
%P 239 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/
%G en
%F PIM_2014_N_S_95_109_a18
Ajit Barman. On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 239 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/