On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 239
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We study a Para-Sasakian manifold admitting a semi-symmetric metric connection whose projective curvature tensor satisfies certain curvature conditions.
Classification :
53C15 53C25
Keywords: para-Sasakian manifold, semi-symmetric metric connection, recurrent, $\eta$-Einstein, $\xi$-projectively flat, locally $\phi$-projectively symmetric manifold
Keywords: para-Sasakian manifold, semi-symmetric metric connection, recurrent, $\eta$-Einstein, $\xi$-projectively flat, locally $\phi$-projectively symmetric manifold
@article{PIM_2014_N_S_95_109_a18,
author = {Ajit Barman},
title = {On {Para-Sasakian} {Manifolds} {Admitting} {Semi-symmetric} {Metric} {Connection}},
journal = {Publications de l'Institut Math\'ematique},
pages = {239 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/}
}
TY - JOUR AU - Ajit Barman TI - On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection JO - Publications de l'Institut Mathématique PY - 2014 SP - 239 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/ LA - en ID - PIM_2014_N_S_95_109_a18 ER -
Ajit Barman. On Para-Sasakian Manifolds Admitting Semi-symmetric Metric Connection. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 239 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a18/