On the Farthest Points in Convex Metric Spaces and Linear Metric Spaces
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 229
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove some results on the farthest points in convex metric spaces and in linear metric spaces. The continuity of the farthest point map and characterization of strictly convex linear metric spaces in terms of farthest points are also discussed.
Classification :
46B20 46B99 46C15 46C99 41A65
Keywords: Chebyshev centre, convex metric space, externally convex metric space, farthest point, farthest point map, $M$-space, strictly convex linear metric space, remotal set, uniquely remotal set
Keywords: Chebyshev centre, convex metric space, externally convex metric space, farthest point, farthest point map, $M$-space, strictly convex linear metric space, remotal set, uniquely remotal set
@article{PIM_2014_N_S_95_109_a17,
author = {Sangeeta and T. D. Narang},
title = {On the {Farthest} {Points} in {Convex} {Metric} {Spaces} and {Linear} {Metric} {Spaces}},
journal = {Publications de l'Institut Math\'ematique},
pages = {229 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a17/}
}
TY - JOUR AU - Sangeeta AU - T. D. Narang TI - On the Farthest Points in Convex Metric Spaces and Linear Metric Spaces JO - Publications de l'Institut Mathématique PY - 2014 SP - 229 VL - _N_S_95 IS - 109 UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a17/ LA - en ID - PIM_2014_N_S_95_109_a17 ER -
Sangeeta ; T. D. Narang. On the Farthest Points in Convex Metric Spaces and Linear Metric Spaces. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 229 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a17/