On Weak $\alpha$-skew McCoy Rings
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 221
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\alpha$ be an endomorphism of a ring $R$. We introduce the notion of weak $\alpha$-skew McCoy rings which are a generalization of the $\alpha$-skew McCoy rings and the weak McCo rings. Some properties of this generalization are established, and connections of properties of a weak $\alpha$-skew McCoy ring $R$ with $n\times n$ upper triangular $T_n(R)$ are investigated. We study relationship between the weak skew McCoy property of a ring $R$ and its polynomial ring, $R[x]$. Among applications, we show a number of interesting properties of a weak $\alpha$-skew McCoy ring $R$ such as weak skew McCoy property in a ring $R$.
Classification :
16S36 16S50
Keywords: McCoy rings, skew polynomial rings, reduced rings
Keywords: McCoy rings, skew polynomial rings, reduced rings
@article{PIM_2014_N_S_95_109_a16,
author = {Mohammad Javad Nikmehr and Ali Nejati and Mansoureh Deldar},
title = {On {Weak} $\alpha$-skew {McCoy} {Rings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {221 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a16/}
}
TY - JOUR AU - Mohammad Javad Nikmehr AU - Ali Nejati AU - Mansoureh Deldar TI - On Weak $\alpha$-skew McCoy Rings JO - Publications de l'Institut Mathématique PY - 2014 SP - 221 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a16/ LA - en ID - PIM_2014_N_S_95_109_a16 ER -
Mohammad Javad Nikmehr; Ali Nejati; Mansoureh Deldar. On Weak $\alpha$-skew McCoy Rings. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 221 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a16/