Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 215 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $R$ be a completely primary finite ring with identity $1\neq 0$ in which the product of any two zero divisors lies in its coefficient subring. We determine the structure of the group of units $G_R$ of these rings in the case when $R$ is commutative and in some particular cases, obtain the structure and linearly independent generators of $G_R$.
Classification : 16P10 16U60 20K01 20K25
Keywords: Completely primary finite rings, Galois rings
@article{PIM_2014_N_S_95_109_a15,
     author = {Chiteng and a John Chikunji},
     title = {Unit {Groups} of {Finite} {Rings} with {Products} of {Zero} {Divisors} in {Their} {Coefficient} {Subrings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {215 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/}
}
TY  - JOUR
AU  - Chiteng
AU  - a John Chikunji
TI  - Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 215 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/
LA  - en
ID  - PIM_2014_N_S_95_109_a15
ER  - 
%0 Journal Article
%A Chiteng
%A a John Chikunji
%T Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings
%J Publications de l'Institut Mathématique
%D 2014
%P 215 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/
%G en
%F PIM_2014_N_S_95_109_a15
Chiteng; a John Chikunji. Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 215 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/