Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 215
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ be a completely primary finite ring with identity $1\neq 0$ in which the product of any two zero divisors lies in its coefficient subring. We determine the structure of the group of units $G_R$ of these rings in the case when $R$ is commutative and in some particular cases, obtain the structure and linearly independent generators of $G_R$.
Classification :
16P10 16U60 20K01 20K25
Keywords: Completely primary finite rings, Galois rings
Keywords: Completely primary finite rings, Galois rings
@article{PIM_2014_N_S_95_109_a15,
author = {Chiteng and a John Chikunji},
title = {Unit {Groups} of {Finite} {Rings} with {Products} of {Zero} {Divisors} in {Their} {Coefficient} {Subrings}},
journal = {Publications de l'Institut Math\'ematique},
pages = {215 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/}
}
TY - JOUR AU - Chiteng AU - a John Chikunji TI - Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings JO - Publications de l'Institut Mathématique PY - 2014 SP - 215 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/ LA - en ID - PIM_2014_N_S_95_109_a15 ER -
%0 Journal Article %A Chiteng %A a John Chikunji %T Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings %J Publications de l'Institut Mathématique %D 2014 %P 215 %V _N_S_95 %N 109 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/ %G en %F PIM_2014_N_S_95_109_a15
Chiteng; a John Chikunji. Unit Groups of Finite Rings with Products of Zero Divisors in Their Coefficient Subrings. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 215 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a15/