An Unexpected Property of Odd Order Derivatives of Hardy's Function
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 173
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Assuming the Riemann hypothesis, we show that the odd order derivatives of Hardy's function have, under some condition, an unexpected behavior for large values of $t$.
Classification :
11M26
Keywords: Riemann zeta function, distribution of zeros, Hardy's function
Keywords: Riemann zeta function, distribution of zeros, Hardy's function
@article{PIM_2014_N_S_95_109_a12,
author = {Philippe Blanc},
title = {An {Unexpected} {Property} of {Odd} {Order} {Derivatives} of {Hardy's} {Function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {173 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a12/}
}
TY - JOUR AU - Philippe Blanc TI - An Unexpected Property of Odd Order Derivatives of Hardy's Function JO - Publications de l'Institut Mathématique PY - 2014 SP - 173 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a12/ LA - en ID - PIM_2014_N_S_95_109_a12 ER -
Philippe Blanc. An Unexpected Property of Odd Order Derivatives of Hardy's Function. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 173 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a12/