An Unexpected Property of Odd Order Derivatives of Hardy's Function
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 173
Assuming the Riemann hypothesis, we show that the odd order derivatives of Hardy's function have, under some condition, an unexpected behavior for large values of $t$.
Classification :
11M26
Keywords: Riemann zeta function, distribution of zeros, Hardy's function
Keywords: Riemann zeta function, distribution of zeros, Hardy's function
@article{PIM_2014_N_S_95_109_a12,
author = {Philippe Blanc},
title = {An {Unexpected} {Property} of {Odd} {Order} {Derivatives} of {Hardy's} {Function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {173 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a12/}
}
Philippe Blanc. An Unexpected Property of Odd Order Derivatives of Hardy's Function. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 173 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a12/