On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The modulus of smoothness in the norm of space $L_q$ of nonperiodic functions of several variables is estimated by best approximations by entire functions of exponential type in the metric of space $L_p$, $1\leq p\leq q\infty$.
Classification :
42B99
@article{PIM_2014_N_S_95_109_a11,
author = {Milo\v{s} Tomi\'c},
title = {On the {Converse} {Theorem} of {Approximation} in {Various} {Metrics} for {Nonperiodic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {161 },
publisher = {mathdoc},
volume = {_N_S_95},
number = {109},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/}
}
TY - JOUR AU - Miloš Tomić TI - On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions JO - Publications de l'Institut Mathématique PY - 2014 SP - 161 VL - _N_S_95 IS - 109 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/ LA - en ID - PIM_2014_N_S_95_109_a11 ER -
%0 Journal Article %A Miloš Tomić %T On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions %J Publications de l'Institut Mathématique %D 2014 %P 161 %V _N_S_95 %N 109 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/ %G en %F PIM_2014_N_S_95_109_a11
Miloš Tomić. On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/