On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The modulus of smoothness in the norm of space $L_q$ of nonperiodic functions of several variables is estimated by best approximations by entire functions of exponential type in the metric of space $L_p$, $1\leq p\leq q\infty$.
Classification :
42B99
@article{PIM_2014_N_S_95_109_a11,
author = {Milo\v{s} Tomi\'c},
title = {On the {Converse} {Theorem} of {Approximation} in {Various} {Metrics} for {Nonperiodic} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {161 },
year = {2014},
volume = {_N_S_95},
number = {109},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/}
}
TY - JOUR AU - Miloš Tomić TI - On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions JO - Publications de l'Institut Mathématique PY - 2014 SP - 161 VL - _N_S_95 IS - 109 UR - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/ LA - en ID - PIM_2014_N_S_95_109_a11 ER -
Miloš Tomić. On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/