On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The modulus of smoothness in the norm of space $L_q$ of nonperiodic functions of several variables is estimated by best approximations by entire functions of exponential type in the metric of space $L_p$, $1\leq p\leq q\infty$.
Classification : 42B99
@article{PIM_2014_N_S_95_109_a11,
     author = {Milo\v{s} Tomi\'c},
     title = {On the {Converse} {Theorem} of {Approximation} in {Various} {Metrics} for {Nonperiodic} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {161 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/}
}
TY  - JOUR
AU  - Miloš Tomić
TI  - On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 161 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/
LA  - en
ID  - PIM_2014_N_S_95_109_a11
ER  - 
%0 Journal Article
%A Miloš Tomić
%T On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions
%J Publications de l'Institut Mathématique
%D 2014
%P 161 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/
%G en
%F PIM_2014_N_S_95_109_a11
Miloš Tomić. On the Converse Theorem of Approximation in Various Metrics for Nonperiodic Functions. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 161 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a11/