$C_{\infty}$-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 99
We consider the free 2-step nilpotent Lie algebra and its cohomology ring. The homotopy transfer induces a homotopy commutative algebra on its cohomology ring which we describe. We show that this cohomology is generated in degree 1 as $C_\infty$-algebra only by the induced binary and ternary operations.
Classification :
17B35 17B56 18G10 17D98
@article{PIM_2013_N_S_94_108_a9,
author = {Michel Dubois-Violette and Todor Popov},
title = {$C_{\infty}$-structure on the {Cohomology} of the {Free} {2-Nilpotent} {Lie} {Algebra}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
year = {2013},
volume = {_N_S_94},
number = {108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a9/}
}
TY - JOUR
AU - Michel Dubois-Violette
AU - Todor Popov
TI - $C_{\infty}$-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra
JO - Publications de l'Institut Mathématique
PY - 2013
SP - 99
VL - _N_S_94
IS - 108
UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a9/
LA - en
ID - PIM_2013_N_S_94_108_a9
ER -
%0 Journal Article
%A Michel Dubois-Violette
%A Todor Popov
%T $C_{\infty}$-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra
%J Publications de l'Institut Mathématique
%D 2013
%P 99
%V _N_S_94
%N 108
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a9/
%G en
%F PIM_2013_N_S_94_108_a9
Michel Dubois-Violette; Todor Popov. $C_{\infty}$-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 99 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a9/