Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{PIM_2013_N_S_94_108_a6, author = {Bang-Yen Chen}, title = {A {Tour} {Through} $\delta$-invariants: from {Nash's} {Embedding} {Theorem} to {Ideal} {Immersions,} {Best} {Ways} of {Living} and {Beyond}}, journal = {Publications de l'Institut Math\'ematique}, pages = {67 }, publisher = {mathdoc}, volume = {_N_S_94}, number = {108}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a6/} }
TY - JOUR AU - Bang-Yen Chen TI - A Tour Through $\delta$-invariants: from Nash's Embedding Theorem to Ideal Immersions, Best Ways of Living and Beyond JO - Publications de l'Institut Mathématique PY - 2013 SP - 67 VL - _N_S_94 IS - 108 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a6/ LA - en ID - PIM_2013_N_S_94_108_a6 ER -
%0 Journal Article %A Bang-Yen Chen %T A Tour Through $\delta$-invariants: from Nash's Embedding Theorem to Ideal Immersions, Best Ways of Living and Beyond %J Publications de l'Institut Mathématique %D 2013 %P 67 %V _N_S_94 %N 108 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a6/ %G en %F PIM_2013_N_S_94_108_a6
Bang-Yen Chen. A Tour Through $\delta$-invariants: from Nash's Embedding Theorem to Ideal Immersions, Best Ways of Living and Beyond. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 67 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a6/