A Note on Rakić Duality Principle for Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that for a Riemannian manifold, the pointwise Osserman condition is equivalent to the Rakić duality principle.
Classification : 53B20 53C25
Keywords: Jacobi operator, Osserman manifold, duality principle
@article{PIM_2013_N_S_94_108_a3,
     author = {Yuri Nikolayevsky and Zoran Raki\'c},
     title = {A {Note} on {Raki\'c} {Duality} {Principle} for {Osserman} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {43 },
     publisher = {mathdoc},
     volume = {_N_S_94},
     number = {108},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/}
}
TY  - JOUR
AU  - Yuri Nikolayevsky
AU  - Zoran Rakić
TI  - A Note on Rakić Duality Principle for Osserman Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 43 
VL  - _N_S_94
IS  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/
LA  - en
ID  - PIM_2013_N_S_94_108_a3
ER  - 
%0 Journal Article
%A Yuri Nikolayevsky
%A Zoran Rakić
%T A Note on Rakić Duality Principle for Osserman Manifolds
%J Publications de l'Institut Mathématique
%D 2013
%P 43 
%V _N_S_94
%N 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/
%G en
%F PIM_2013_N_S_94_108_a3
Yuri Nikolayevsky; Zoran Rakić. A Note on Rakić Duality Principle for Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/