A Note on Rakić Duality Principle for Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove that for a Riemannian manifold, the pointwise Osserman condition is equivalent to the Rakić duality principle.
Classification : 53B20 53C25
Keywords: Jacobi operator, Osserman manifold, duality principle
@article{PIM_2013_N_S_94_108_a3,
     author = {Yuri Nikolayevsky and Zoran Raki\'c},
     title = {A {Note} on {Raki\'c} {Duality} {Principle} for {Osserman} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {43 },
     publisher = {mathdoc},
     volume = {_N_S_94},
     number = {108},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/}
}
TY  - JOUR
AU  - Yuri Nikolayevsky
AU  - Zoran Rakić
TI  - A Note on Rakić Duality Principle for Osserman Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 43 
VL  - _N_S_94
IS  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/
LA  - en
ID  - PIM_2013_N_S_94_108_a3
ER  - 
%0 Journal Article
%A Yuri Nikolayevsky
%A Zoran Rakić
%T A Note on Rakić Duality Principle for Osserman Manifolds
%J Publications de l'Institut Mathématique
%D 2013
%P 43 
%V _N_S_94
%N 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/
%G en
%F PIM_2013_N_S_94_108_a3
Yuri Nikolayevsky; Zoran Rakić. A Note on Rakić Duality Principle for Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/