A Note on Rakić Duality Principle for Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that for a Riemannian manifold, the pointwise Osserman condition is equivalent to the Rakić duality principle.
Classification :
53B20 53C25
Keywords: Jacobi operator, Osserman manifold, duality principle
Keywords: Jacobi operator, Osserman manifold, duality principle
@article{PIM_2013_N_S_94_108_a3,
author = {Yuri Nikolayevsky and Zoran Raki\'c},
title = {A {Note} on {Raki\'c} {Duality} {Principle} for {Osserman} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {43 },
year = {2013},
volume = {_N_S_94},
number = {108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/}
}
Yuri Nikolayevsky; Zoran Rakić. A Note on Rakić Duality Principle for Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/