A Note on Rakić Duality Principle for Osserman Manifolds
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove that for a Riemannian manifold, the pointwise Osserman condition is equivalent to the Rakić duality principle.
Classification :
53B20 53C25
Keywords: Jacobi operator, Osserman manifold, duality principle
Keywords: Jacobi operator, Osserman manifold, duality principle
@article{PIM_2013_N_S_94_108_a3,
author = {Yuri Nikolayevsky and Zoran Raki\'c},
title = {A {Note} on {Raki\'c} {Duality} {Principle} for {Osserman} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {43 },
publisher = {mathdoc},
volume = {_N_S_94},
number = {108},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/}
}
TY - JOUR AU - Yuri Nikolayevsky AU - Zoran Rakić TI - A Note on Rakić Duality Principle for Osserman Manifolds JO - Publications de l'Institut Mathématique PY - 2013 SP - 43 VL - _N_S_94 IS - 108 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/ LA - en ID - PIM_2013_N_S_94_108_a3 ER -
Yuri Nikolayevsky; Zoran Rakić. A Note on Rakić Duality Principle for Osserman Manifolds. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 43 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a3/