On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 205 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In \cite{22}, using polylinear mappings, we obtained several curvature tensors in the space $L_N$ with non-symmetric affine connection $\nabla$. %Five of these tensors are independent, and the others are linear combinations of the mentioned ones. By the same method, we here examine Ricci type identities.
Classification : 53C05 53B05
Keywords: non-symmetric connection, curvature tensors, independent curvature tensors
@article{PIM_2013_N_S_94_108_a20,
     author = {Svetislav M. Min\v{c}i\'c},
     title = {On {Ricci} {Type} {Identities} in {Manifolds} with {Non-symmetric} {Affine} {Connection}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {205 },
     publisher = {mathdoc},
     volume = {_N_S_94},
     number = {108},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/}
}
TY  - JOUR
AU  - Svetislav M. Minčić
TI  - On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection
JO  - Publications de l'Institut Mathématique
PY  - 2013
SP  - 205 
VL  - _N_S_94
IS  - 108
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/
LA  - en
ID  - PIM_2013_N_S_94_108_a20
ER  - 
%0 Journal Article
%A Svetislav M. Minčić
%T On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection
%J Publications de l'Institut Mathématique
%D 2013
%P 205 
%V _N_S_94
%N 108
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/
%G en
%F PIM_2013_N_S_94_108_a20
Svetislav M. Minčić. On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 205 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/