On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection
Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 205
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In \cite{22}, using polylinear mappings, we obtained several curvature tensors in the space $L_N$ with non-symmetric affine connection $\nabla$. %Five of these tensors are independent, and the others are linear combinations of the mentioned ones. By the same method, we here examine Ricci type identities.
Classification :
53C05 53B05
Keywords: non-symmetric connection, curvature tensors, independent curvature tensors
Keywords: non-symmetric connection, curvature tensors, independent curvature tensors
@article{PIM_2013_N_S_94_108_a20,
author = {Svetislav M. Min\v{c}i\'c},
title = {On {Ricci} {Type} {Identities} in {Manifolds} with {Non-symmetric} {Affine} {Connection}},
journal = {Publications de l'Institut Math\'ematique},
pages = {205 },
year = {2013},
volume = {_N_S_94},
number = {108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/}
}
TY - JOUR AU - Svetislav M. Minčić TI - On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection JO - Publications de l'Institut Mathématique PY - 2013 SP - 205 VL - _N_S_94 IS - 108 UR - http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/ LA - en ID - PIM_2013_N_S_94_108_a20 ER -
Svetislav M. Minčić. On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection. Publications de l'Institut Mathématique, _N_S_94 (2013) no. 108, p. 205 . http://geodesic.mathdoc.fr/item/PIM_2013_N_S_94_108_a20/